Classification of PM Quiver Hopf Algebras

We describe certain quiver Hopf algebras by parameters. This leads to the classification of multiple Taft algebras as well as pointed Yetter–Drinfeld modules and their corresponding Nichols algebras. In particular, when the ground-field k is the complex field and G is a finite abelian group, we classify quiver Hopf algebras over G, multiple Taft algebras over G and Nichols algebras in . We show that the quantum enveloping algebra of a complex semisimple Lie algebra is a quotient of a semi-path Hopf algebra.

[1]  Xinyun Zhu Finite representations of a quiver arising from string theory , 2005, math/0507316.

[2]  Pu Zhang,et al.  Quiver Hopf algebras , 2004 .

[3]  Shouchuan Zhang Homological Dimension of Crossed Products , 2003, math/0311520.

[4]  Pu Zhang,et al.  Monomial Hopf algebras , 2003, math/0308023.

[5]  P. Etingof,et al.  The classification of finite-dimensional triangular Hopf algebras over an algebraically closed field of characteristic 0 , 2002, math/0202258.

[6]  H. Schneider,et al.  New directions in Hopf algebras , 2002 .

[7]  H. Schneider,et al.  Pointed Hopf algebras , 2001, math/0110136.

[8]  S. Raianu,et al.  Hopf algebras : an introduction , 2001 .

[9]  Claude Cibils,et al.  Hopf quivers , 2000, math/0009106.

[10]  H. Schneider,et al.  Finite Quantum Groups and Cartan Matrices , 2000 .

[11]  H. Schneider,et al.  Lifting of Quantum Linear Spaces and Pointed Hopf Algebras of Orderp3 , 1998, math/9803058.

[12]  H. Schneider,et al.  Hopf Algebras of Orderp2and Braided Hopf Algebras of Orderp , 1998 .

[13]  H. Schneider,et al.  Hopf Algebras of Order p 2 and Braided Hopf Algebras of Order p , 1998 .

[14]  Shouchuan Zhang The Baer and Jacobson Radicals of Crossed Products , 1998 .

[15]  C. Cibils,et al.  Algèbres des chemins quantiques , 1997 .

[16]  H. H. Andersen,et al.  Quantum groups at roots of ±1 , 1996 .

[17]  S. Majid Algebras and Hopf Algebras in Braided Categories , 1995, q-alg/9509023.

[18]  W. Szymański Finite index subfactors and Hopf algebra crossed products , 1994 .

[19]  Y. Drozd,et al.  Finite dimensional algebras , 1994 .

[20]  Claude Cibils A quiver quantum group , 1993 .

[21]  Jacob Towber,et al.  Yetter-Drinfel'd categories associated to an arbitrary bialgebra , 1993 .

[22]  George Lusztig,et al.  Introduction to Quantum Groups , 1993 .

[23]  Susan Montgomery,et al.  Hopf algebras and their actions on rings , 1993 .

[24]  I. Frenkel,et al.  Vertex operator algebras associated to representations of affine and Virasoro Algebras , 1992 .

[25]  M. Hennings Hopf algebras and regular isotopy invariants for link diagrams , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[26]  Shahn Majid,et al.  Physics for algebraists: Non-commutative and non-cocommutative Hopf algebras by a bicrossproduct construction , 1990 .

[27]  V. Turaev,et al.  Ribbon graphs and their invaraints derived from quantum groups , 1990 .

[28]  S. Woronowicz,et al.  Differential calculus on compact matrix pseudogroups (quantum groups) , 1989 .

[29]  D. Radford The structure of Hopf algebras with a projection , 1985 .

[30]  Warren D. Nichols Bialgebras of type one , 1978 .

[31]  Auslander Maurice,et al.  Representation Theory of Artin Algebras I , 1974 .

[32]  Frank W. Anderson,et al.  Rings and Categories of Modules , 1974 .

[33]  M. Takeuchi Free Hopf algebras generated by coalgebras , 1971 .