Delaunay Triangulation of Imprecise Points, Preprocess and Actually Get a Fast Query Time

We propose a new algorithm that preprocess a set of n disjoint unit disks to be able to compute the Delaunay triangulation in O(n) expected time. Conversely to previous similar results, our algorithm is actually faster than a direct computation in O(n log n) time.

[1]  Leonidas J. Guibas,et al.  An empirical comparison of techniques for updating Delaunay triangulations , 2004, SCG '04.

[2]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[3]  Bernard Chazelle,et al.  Splitting a Delaunay Triangulation in Linear Time , 2001, Algorithmica.

[4]  R. Seidel Backwards Analysis of Randomized Geometric Algorithms , 1993 .

[5]  Leonidas J. Guibas,et al.  Constructing Strongly Convex Approximate Hulls with Inaccurate Primitives , 1990, SIGAL International Symposium on Algorithms.

[6]  Francis Y. L. Chin,et al.  Finding the Constrained Delaunay Triangulation and Constrained Voronoi Diagram of a Simple Polygon in Linear Time , 1999, SIAM J. Comput..

[7]  Leonidas J. Guibas,et al.  Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.

[8]  Olivier Devillers,et al.  Simple and Efficient Distribution-Sensitive Point Location, in Triangulations , 2011, ALENEX.

[9]  Takayuki Nagai,et al.  Convex Hull Problem with Imprecise Input , 1998, JCDCG.

[10]  Charles L. Lawson,et al.  $C^1$ surface interpolation for scattered data on a sphere , 1984 .

[11]  Olivier Devillers,et al.  Walking in a Triangulation , 2002, Int. J. Found. Comput. Sci..

[12]  Olivier Devillers,et al.  Self-Adapting Point Location , 2009 .

[13]  Maarten Löffler,et al.  Delaunay triangulation of imprecise points in linear time after preprocessing , 2010, Comput. Geom..

[14]  Luc Devroye,et al.  A Note on Point Location in Delaunay Triangulations of Random Points , 1998, Algorithmica.

[15]  Wolfgang Mulzer,et al.  Delaunay Triangulations in O(sort(n)) Time and More , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[16]  Kevin Buchin Constructing Delaunay Triangulations along Space-Filling Curves , 2009, ESA.

[17]  Pedro Machado Manhães de Castro Practical Ways to Accelerate Delaunay Triangulations , 2010 .

[18]  Leonidas J. Guibas,et al.  Adaptively sampled particle fluids , 2007, ACM Trans. Graph..

[19]  D. Salesin,et al.  Constructing strongly convex approximate hulls with inaccurate primitives , 1990, Algorithmica.

[20]  Maarten Löffler,et al.  Preprocessing Imprecise Points for Delaunay Triangulation: Simplified and Extended , 2010, Algorithmica.

[21]  Pierre Alliez,et al.  Filtering Relocations on a Delaunay Triangulation , 2009, Comput. Graph. Forum.

[22]  Raimund Seidel Reprint of: A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons , 2010, Comput. Geom..

[23]  Luc Devroye,et al.  Expected time analysis for Delaunay point location , 2004, Comput. Geom..

[24]  Olivier Devillers,et al.  The Delaunay Hierarchy , 2002, Int. J. Found. Comput. Sci..

[25]  Maarten Löffler,et al.  Delaunay Triangulation of Imprecise Points Simplified and Extended , 2009, WADS.

[26]  Raimund Seidel,et al.  A Simple and Fast Incremental Randomized Algorithm for Computing Trapezoidal Decompositions and for Triangulating Polygons , 1991, Comput. Geom..

[27]  Robin Sibson,et al.  Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..

[28]  Günter Rote,et al.  Incremental constructions con BRIO , 2003, SCG '03.

[29]  J. Eeckhout,et al.  Spatial Sorting , 2014, Journal of Political Economy.