Polypurine (A)-rich sequences promote cross-kingdom conservation of internal ribosome entry

The internal ribosome entry sites (IRES), IRES\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{CP,148}^{CR}}}\end{equation*}\end{document} and IRES\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{MP,75}^{CR}}}\end{equation*}\end{document}, precede the coat protein (CP) and movement protein (MP) genes of crucifer-infecting tobamovirus (crTMV), respectively. In the present work, we analyzed the activity of these elements in transgenic plants and other organisms. Comparison of the relative activities of the crTMV IRES elements and the IRES from an animal virus—encephalomyocarditis virus—in plant, yeast, and HeLa cells identified the 148-nt IRES\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{CP,148}^{CR}}}\end{equation*}\end{document} as the strongest element that also displayed IRES activity across all kingdoms. Deletion analysis suggested that the polypurine (A)-rich sequences (PARSs) contained in IRES\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{CP,148}^{CR}}}\end{equation*}\end{document} are responsible for these features. On the basis of those findings, we designed artificial PARS-containing elements and showed that they, too, promote internal translation from dicistronic transcripts in vitro, in tobacco protoplasts and in HeLa cells. The maximum IRES activity was obtained from multiple copies of either (A)4G(A)2(G)2 or G(A)2–5 as contained in IRES\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{CP,148}^{CR}}}\end{equation*}\end{document}. Remarkably, even homopolymeric poly(A) was moderately active, whereas a poly(G) homopolymer was not active. Furthermore, a database search for existing PARS sequences in 5′-untranslated regions (5′UTR) of genes in tobacco genome allowed the easy identification of a number of IRES candidates, in particular in the 5′UTR of the gene encoding Nicotiana tabacum heat-shock factor 1 (NtHSF1). Consistent with our prediction, the 5′UTR of NtHSF1 turned out to be an IRES element active in vitro, in plant protoplasts and HeLa cells. We predict that PARS elements, when found in other mRNAs, will show a similar activity.

[1]  J. Fry,et al.  A simple and general method for transferring genes into plants. , 1985, Science.

[2]  S. Morozov,et al.  Complete nucleotide sequence and genome organization of a tobamovirus infecting cruciferae plants , 1994, FEBS letters.

[3]  C. Hellen,et al.  Structural analysis of the interaction of the pyrimidine tract-binding protein with the internal ribosomal entry site of encephalomyocarditis virus and foot-and-mouth disease virus RNAs. , 1996, RNA.

[4]  Robert L. Tanguay,et al.  The tobacco etch viral 5' leader and poly(A) tail are functionally synergistic regulators of translation. , 1995, Gene.

[5]  S. Fukushi,et al.  Ribosomal Protein S5 Interacts with the Internal Ribosomal Entry Site of Hepatitis C Virus* , 2001, The Journal of Biological Chemistry.

[6]  R. Jackson,et al.  A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. , 1998, Genes & development.

[7]  S. Chapman,et al.  A novel strategy for the expression of foreign genes from plant virus vectors , 2001, FEBS letters.

[8]  G. Edelman,et al.  rRNA-complementarity in the 5' untranslated region of mRNA specifying the Gtx homeodomain protein: evidence that base- pairing to 18S rRNA affects translational efficiency. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[9]  F. Salamini,et al.  Characterization of a potato leafroll luteovirus subgenomic RNA: differential expression by internal translation initiation and UAG suppression. , 1990, The Journal of general virology.

[10]  V. Agol,et al.  A cell cycle-dependent protein serves as a template-specific translation initiation factor. , 2000, Genes & development.

[11]  P. Coward,et al.  Yeast cells are incapable of translating RNAs containing the poliovirus 5' untranslated region: evidence for a translational inhibitor , 1992, Journal of virology.

[12]  R. Jackson,et al.  The polypyrimidine tract binding protein (PTB) requirement for internal initiation of translation of cardiovirus RNAs is conditional rather than absolute. , 1998, RNA.

[13]  D. Klessig,et al.  Salicylic acid activates a 48-kD MAP kinase in tobacco. , 1997, The Plant cell.

[14]  T. Korpela,et al.  Internal initiation of translation directed by the 5'-untranslated region of the tobamovirus subgenomic RNA I(2). , 1999, Virology.

[15]  G. Edelman,et al.  rRNA-like sequences occur in diverse primary transcripts: implications for the control of gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Kozak Initiation of translation in prokaryotes and eukaryotes. , 1999, Gene.

[17]  N. Sonenberg,et al.  Picornavirus RNA translation: roles for cellular proteins. , 2000, Trends in microbiology.

[18]  E. ter Haar,et al.  Cowpea mosaic virus middle component RNA contains a sequence that allows internal binding of ribosomes and that requires eukaryotic initiation factor 4F for optimal translation , 1991, Journal of virology.

[19]  V. Agol,et al.  Molecular mechanisms of translation initiation in eukaryotes , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Werner IRES Elements in Connexin Genes: A Hypothesis Explaining the Need for Connexins to Be Regulated at the Translational Level , 2000, IUBMB life.

[21]  A. Sachs Cell Cycle–Dependent Translation Initiation IRES Elements Prevail , 2000, Cell.

[22]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[23]  P. Urwin,et al.  Functional characterization of the EMCV IRES in plants. , 2000, The Plant journal : for cell and molecular biology.

[24]  J. Carrington,et al.  Cap-independent enhancement of translation by a plant potyvirus 5' nontranslated region , 1990, Journal of virology.

[25]  S. Altuvia,et al.  Translation Control of Gene Expression , 1991, Journal of basic and clinical physiology and pharmacology.

[26]  A. Bogdanov,et al.  Internal ribosome entry site ofencephalomyocarditis virus RNA is unable to direct translation in Saccharomyces cerevisiae , 1993, FEBS letters.

[27]  T. E. Dever,et al.  Translation initiation: adept at adapting. , 1999, Trends in biochemical sciences.

[28]  M. Ott,et al.  Inhibition of internal entry site (IRES)-mediated translation by a small yeast RNA: a novel strategy to block hepatitis C virus protein synthesis. , 1998, Frontiers in bioscience : a journal and virtual library.

[29]  E. Wimmer,et al.  Translation of poliovirus RNA: role of an essential cis-acting oligopyrimidine element within the 5' nontranslated region and involvement of a cellular 57-kilodalton protein , 1991, Journal of virology.

[30]  G M Edelman,et al.  Transcript leader regions of two Saccharomyces cerevisiae mRNAs contain internal ribosome entry sites that function in living cells. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  V. M. Pain Initiation of protein synthesis in eukaryotic cells. , 1996, European journal of biochemistry.

[32]  J. Atabekov,et al.  A tobamovirus genome that contains an internal ribosome entry site functional in vitro. , 1997, Virology.

[33]  P. Sarnow,et al.  Naturally Occurring Dicistronic Cricket Paralysis Virus RNA Is Regulated by Two Internal Ribosome Entry Sites , 2000, Molecular and Cellular Biology.

[34]  M. Niepel,et al.  Identification and Characterization of the Functional Elements within the Tobacco Etch Virus 5′ Leader Required for Cap-Independent Translation , 1999, Journal of Virology.

[35]  D. Gallie,et al.  Sequence diversity and conservation of the poly(A)-binding protein in plants , 2000 .

[36]  N. Nakashima,et al.  Methionine-independent initiation of translation in the capsid protein of an insect RNA virus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  B. Moss,et al.  Replication-deficient vaccinia virus encoding bacteriophage T7 RNA polymerase for transient gene expression in mammalian cells. , 1995, Virology.

[38]  M. Katze,et al.  Translational Control of Viral Gene Expression in Eukaryotes , 2000, Microbiology and Molecular Biology Reviews.

[39]  D. E. Griffiths,et al.  DMSO-enhanced whole cell yeast transformation. , 1991, Nucleic acids research.

[40]  T. Chow,et al.  A new internal-ribosome-entry-site motif potentiates XIAP- mediated cytoprotection , 1999, Nature Cell Biology.

[41]  Esther M. Lafuente,et al.  Functional interactions in internal translation initiation directed by viral and cellular IRES elements. , 2001, The Journal of general virology.