Applying Genetic Regulatory Networks to Index Trading

This paper explores the computational power of genetic regulatory network models, and the practicalities of applying these to real-world problems. The specific domain of financial trading is tackled; this is a problem where time-dependent decisions are critical, and as such benefits from the differential gene expression that these networks provide. The results obtained are on par with the best found in the literature, and highlight the applicability of these models to this type of problem.

[1]  Marc Schoenauer,et al.  Evolving Genes to Balance a Pole , 2010, EuroGP.

[2]  Anthony Brabazon,et al.  Evolving Market Index Trading Rules Using Grammatical Evolution , 2001, EvoWorkshops.

[3]  Mak Kaboudan,et al.  Biologically Inspired Algorithms for Financial Modelling , 2006, Genetic Programming and Evolvable Machines.

[4]  Hervé Luga,et al.  Artificial gene regulatory networks and spatial computation: A case study , 2011, ECAL.

[5]  Wolfgang Banzhaf,et al.  Small World and Scale – Free Network Topologies in an Artificial Regulatory Network Model , 2004 .

[6]  Terence Soule,et al.  Genetic Programming: Theory and Practice , 2003 .

[7]  Ernesto Costa,et al.  ReNCoDe: A Regulatory Network Computational Device , 2011, EuroGP.

[8]  Terence Lim,et al.  Bad News Travels Slowly: Size, Analyst Coverage and the Profitability of Momentum Strategies , 1998 .

[9]  B. LeBaron,et al.  Simple Technical Trading Rules and the Stochastic Properties of Stock Returns , 1992 .

[10]  Rolf Drechsler,et al.  Applications of Evolutionary Computing, EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, Naples, Italy, March 26-28, 2008. Proceedings , 2008, EvoWorkshops.

[11]  Wolfgang Banzhaf,et al.  Evolving Noisy Oscillatory Dynamics in Genetic Regulatory Networks , 2006, EuroGP.

[12]  Hitoshi Iba,et al.  Genetic programming polynomial models of financial data series , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[13]  Ingo Rechenberg,et al.  Evolutionsstrategie '94 , 1994, Werkstatt Bionik und Evolutionstechnik.

[14]  Marc Schoenauer,et al.  On the evolution of scale-free topologies with a gene regulatory network model , 2009, Biosyst..

[15]  W. Banzhaf Artificial Regulatory Networks and Genetic Programming , 2003 .

[16]  J. Miller,et al.  Guidelines: From artificial evolution to computational evolution: a research agenda , 2006, Nature Reviews Genetics.

[17]  Wolfgang Banzhaf,et al.  Network motifs in natural and artificial transcriptional regulatory networks , 2002, Journal of Biological Physics and Chemistry.

[18]  Michael O'Neill,et al.  Biologically Inspired Algorithms for Financial Modelling (Natural Computing Series) , 2005 .

[19]  Michael O'Neill,et al.  Grammatical evolution - evolutionary automatic programming in an arbitrary language , 2003, Genetic programming.

[20]  Phil Husbands,et al.  Artificial Life IX: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems , 2004 .

[21]  Martin J. Pring,et al.  Technical Analysis Explained: The Successful Investor's Guide to Spotting Investment Trends and Turning Points , 1980 .

[22]  Phil Husbands,et al.  Small World and Scale-Free Network Topologies in an Artificial Regulatory Network Model , 2004 .