Ontology-Based Query Answering for Probabilistic Temporal Data (Abstract)

We investigate ontology-based query answering for data that are both temporal and probabilistic, which might occur in contexts such as stream reasoning or situation recognition with uncertain data. We present a framework that allows to represent temporal probabilistic data, and introduce a query language with which complex temporal and probabilistic patterns can be described. Specifically, this language combines conjunctive queries with operators from linear time logic as well as probability operators. We analyse the complexities of evaluating queries in this language in various settings. While in some cases, combining the temporal and the probabilistic dimension in such a way comes at the cost of increased complexity, we also determine cases for which this increase can be avoided.

[1]  Stefan Borgwardt,et al.  Temporal Query Answering in DL-Lite with Negation , 2015, GCAI.

[2]  Anni-Yasmin Turhan,et al.  Ontology-mediated query answering over temporal and inconsistent data , 2019, Semantic Web.

[3]  Ian Horrocks,et al.  Conjunctive Query Answering for the Description Logic SHIQ , 2007, IJCAI.

[4]  Anni-Yasmin Turhan,et al.  Temporal Query Answering in DL-Lite over Inconsistent Data , 2017, International Semantic Web Conference.

[5]  Martin Theobald,et al.  A Temporal-Probabilistic Database Model for Information Extraction , 2013, Proc. VLDB Endow..

[6]  Magdalena Ortiz,et al.  Closed Predicates in Description Logics: Results on Combined Complexity , 2016, AMW.

[7]  Carsten Lutz,et al.  Two Upper Bounds for Conjunctive Query Answering in SHIQ , 2008, Description Logics.

[8]  Carsten Lutz,et al.  Temporal Description Logics: A Survey , 2008, 2008 15th International Symposium on Temporal Representation and Reasoning.

[9]  Peter van Emde Boas,et al.  The Convenience of Tilings , 2019, complexity, logic, and recursion theory.

[10]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[11]  Patrick Koopmann,et al.  Ontology-Based Query Answering for Probabilistic Temporal Data (Extended Version) , 2018 .

[12]  Thomas Lukasiewicz,et al.  Ontology-Mediated Queries for Probabilistic Databases , 2017, AAAI.

[13]  Carsten Lutz,et al.  Inverse Roles Make Conjunctive Queries Hard , 2007, Description Logics.

[14]  Ian Horrocks,et al.  Unions of Conjunctive Queries in SHOQ , 2008, KR.

[15]  Diego Calvanese,et al.  Answering regular path queries in expressive Description Logics via alternating tree-automata , 2014, Inf. Comput..

[16]  Diego Calvanese,et al.  Regular Path Queries in Expressive Description Logics with Nominals , 2009, IJCAI.

[17]  Franz Baader,et al.  LTL over description logic axioms , 2008, TOCL.

[18]  I. Ceylan The Bayesian Ontology Language BEL , 2016 .

[19]  Boris Motik,et al.  Stream Reasoning in Temporal Datalog , 2017, AAAI.

[20]  Franz Baader,et al.  Metric Temporal Description Logics with Interval-Rigid Names , 2017, Description Logics.

[21]  Frank van Harmelen,et al.  Streaming the Web: Reasoning over dynamic data , 2014, J. Web Semant..

[22]  Guy Van den Broeck,et al.  Open-World Probabilistic Databases: An Abridged Report , 2017, IJCAI.

[23]  Neetika Garg,et al.  A content analysis of smartphone-based applications for hypertension management. , 2015, Journal of the American Society of Hypertension : JASH.

[24]  Riccardo Rosati,et al.  On Conjunctive Query Answering in EL , 2007, Description Logics.

[25]  Frank Wolter,et al.  Ontology-Mediated Query Answering over Temporal Data: A Survey (Invited Talk) , 2017, TIME.

[26]  Dan Suciu,et al.  Efficient query evaluation on probabilistic databases , 2004, The VLDB Journal.

[27]  Patrick Koopmann,et al.  Maybe Eventually? Towards Combining Temporal and Probabilistic Description Logics and Queries , 2019, Description Logics.

[28]  Steven H. Brown,et al.  Evaluation of the content coverage of SNOMED CT: ability of SNOMED clinical terms to represent clinical problem lists. , 2006, Mayo Clinic proceedings.

[29]  Franz Baader,et al.  Using Ontologies to Query Probabilistic Numerical Data , 2017, FroCoS.

[30]  Stefan Borgwardt,et al.  Temporal Query Answering in the Description Logic EL , 2015, IJCAI.

[31]  Lance Fortnow,et al.  PP is Closed Under Truth-Table Reductions , 1996, Inf. Comput..

[32]  Jean Christoph Jung,et al.  Ontology-Based Access to Probabilistic Data with OWL QL , 2012, SEMWEB.

[33]  D. Gabbay,et al.  Many-Dimensional Modal Logics: Theory and Applications , 2003 .

[34]  Rafael Peñaloza,et al.  Dynamic Bayesian Description Logics , 2015, Description Logics.

[35]  Thomas Lukasiewicz,et al.  Expressive probabilistic description logics , 2008, Artif. Intell..

[36]  Stefan Borgwardt,et al.  Temporalizing rewritable query languages over knowledge bases , 2015, J. Web Semant..

[37]  Franz Baader,et al.  Temporal query entailment in the Description Logic SHQ , 2015, J. Web Semant..

[38]  Carsten Lutz,et al.  Probabilistic Description Logics for Subjective Uncertainty , 2010, KR.

[39]  Michael Zakharyaschev,et al.  Ontology-Based Data Access with a Horn Fragment of Metric Temporal Logic , 2017, AAAI.