Influence of equiatomic Zr/Nb substitution on superelastic behavior of Ti–Nb–Zr alloy

[1]  F. Prima,et al.  Controlling reversible martensitic transformation in titanium alloys with high strength and low elastic modulus , 2012 .

[2]  F. Prima,et al.  Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys. , 2012, Journal of the mechanical behavior of biomedical materials.

[3]  F. Prima,et al.  On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects , 2012 .

[4]  F. Prima,et al.  A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti-26Nb and Ti-20Nb-6Zr (at.%) alloys. , 2011, Journal of the mechanical behavior of biomedical materials.

[5]  F. Prima,et al.  Contribution of nano-sized lamellar microstructure on recoverable strain of Ti-24Nb-4Zr-7.9Sn titanium alloy , 2011 .

[6]  F. Prima,et al.  Low-cycle fatigue properties of a titanium alloy exhibiting nonlinear elastic deformation behavior , 2011 .

[7]  Shujun Li,et al.  Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure , 2011 .

[8]  F. Prima,et al.  Influence of a short thermal treatment on the superelastic properties of a titanium-based alloy , 2010 .

[9]  F. Prima,et al.  Mechanical properties of low modulus beta titanium alloys designed from the electronic approach. , 2010, Journal of the mechanical behavior of biomedical materials.

[10]  T. Nam,et al.  Shape memory properties of Ti–Nb–Mo biomedical alloys , 2010 .

[11]  F. Prima,et al.  High-strength nanostructured Ti–12Mo alloy from ductile metastable beta state precursor , 2010 .

[12]  D. Dye,et al.  Mechanics of superelasticity in Ti-30Nb-(8-10)Ta-5Zr alloy , 2010 .

[13]  D. Kent,et al.  Pseudoelastic behaviour of a β Ti–25Nb–3Zr–3Mo–2Sn alloy , 2010 .

[14]  O. Florêncio,et al.  Effect of different annealing on the anelastic relaxation in Ti-13Nb-13Zr alloy , 2009 .

[15]  W. Xu,et al.  Formation of an ultrafine-grained structure during equal-channel angular pressing of a β-titanium alloy with low phase stability , 2009 .

[16]  Yufeng Zheng,et al.  Effects of Sn content on the microstructure, phase constitution and shape memory effect of Ti-Nb-Sn alloys , 2008 .

[17]  Shujun Li,et al.  Thermal stability and mechanical properties of nanostructured Ti-24Nb-4Zr-7.9Sn alloy , 2008 .

[18]  M. Morinaga,et al.  Phase stability change with Zr content in β-type Ti–Nb alloys , 2007 .

[19]  R. Caram,et al.  Development of Ti-Mo alloys for biomedical applications: Microstructure and electrochemical characterization , 2007 .

[20]  R. Yang,et al.  Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications. , 2007, Acta biomaterialia.

[21]  Y. Mantani,et al.  Effect of ageing on internal friction and elastic modulus of Ti–Nb alloys , 2006 .

[22]  Shujun Li,et al.  Effect of Zr and Sn on Young's modulus and superelasticity of Ti-Nb-based alloys , 2006 .

[23]  Shuichi Miyazaki,et al.  Development and characterization of Ni-free Ti-base shape memory and superelastic alloys , 2006 .

[24]  T. Furuhara,et al.  Superelasticity in Ti–10V–2Fe–3Al alloys with nitrogen addition , 2006 .

[25]  Y. Mantani,et al.  Phase transformation of quenched α″ martensite by aging in Ti–Nb alloys , 2006 .

[26]  M. Morinaga,et al.  General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters , 2006 .

[27]  Shuichi Miyazaki,et al.  Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys , 2006 .

[28]  Won-Yong Kim,et al.  Microstructure and elastic modulus of Ti¿Nb¿Si ternary alloys for biomedical applications , 2006 .

[29]  S. Alpay,et al.  Origin of pseudoelastic behavior in Ti–Mo-based alloys , 2005 .

[30]  Shuichi Miyazaki,et al.  Shape memory characteristics of Ti–22Nb–(2–8)Zr(at.%) biomedical alloys , 2005 .

[31]  Shujun Li,et al.  Super-elastic titanium alloy with unstable plastic deformation , 2005 .

[32]  F. Yin,et al.  Microstructure and shape memory behavior of a Ti–30Nb–3Pd alloy , 2005 .

[33]  H. Fraser,et al.  Strengthening mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe orthopaedic alloys. , 2004, Biomaterials.

[34]  H. Hosoda,et al.  Mechanical Properties of a Ti-Nb-Al Shape Memory Alloy , 2004 .

[35]  S. Alpay,et al.  Pseudo-elastic deformation behavior in a Ti/Mo-based alloy , 2004 .

[36]  D. Lin,et al.  Structure and properties of Ti-7.5Mo-xFe alloys. , 2002, Biomaterials.

[37]  C. Ju,et al.  Structure and properties of cast binary Ti-Mo alloys. , 1999, Biomaterials.

[38]  J. Albrecht,et al.  Formation and reversion of stress induced martensite in Ti-10V-2Fe-3Al , 1982 .

[39]  H. Flower,et al.  Martensitic transformations in Ti-Mo alloys , 1979 .