The Numerical Stability Analysis of Pipelined Conjugate Gradient Methods: Historical Context and Methodology

Algebraic solvers based on preconditioned Krylov subspace methods are among the most powerful tools for large-scale numerical computations in applied mathematics, sciences, technology, as well as i...

[1]  Anne Greenbaum,et al.  Predicting the Behavior of Finite Precision Lanczos and Conjugate Gradient Computations , 2015, SIAM J. Matrix Anal. Appl..

[2]  Gerard L. G. Sleijpen,et al.  Inexact Krylov Subspace Methods for Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[3]  Wim Vanroose,et al.  Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm , 2014, Parallel Comput..

[4]  A. Greenbaum Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences , 1989 .

[5]  Emmanuel Agullo,et al.  Analyzing the Effect of Local Rounding Error Propagation on the Maximal Attainable Accuracy of the Pipelined Conjugate Gradient Method , 2016, SIAM J. Matrix Anal. Appl..

[6]  Zdenek Strakos,et al.  Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations , 2014, Numerical Algorithms.

[7]  G. Szegő Polynomials orthogonal on the unit circle , 1939 .

[8]  Gérard Meurant,et al.  NUMERICAL EXPERIMENTS FOR THE PRECONDITIONED CONJUGATE GRADIENT METHOD ON THE CRAY X-MP/2 , 1984 .

[9]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .

[10]  Valeria Simoncini,et al.  On the Occurrence of Superlinear Convergence of Exact and Inexact Krylov Subspace Methods , 2005, SIAM Rev..

[11]  G. Meurant,et al.  The Lanczos and conjugate gradient algorithms in finite precision arithmetic , 2006, Acta Numerica.

[12]  G. Meurant The Lanczos and Conjugate Gradient Algorithms: From Theory to Finite Precision Computations , 2006 .

[13]  Anthony T. Chronopoulos,et al.  On the efficient implementation of preconditioned s-step conjugate gradient methods on multiprocessors with memory hierarchy , 1989, Parallel Comput..

[14]  C. Paige Computational variants of the Lanczos method for the eigenproblem , 1972 .

[15]  Gérard Meurant,et al.  Multitasking on the CRAY X-MP , 1986, J. Syst. Softw..

[16]  James Demmel,et al.  A Residual Replacement Strategy for Improving the Maximum Attainable Accuracy of s-Step Krylov Subspace Methods , 2014, SIAM J. Matrix Anal. Appl..

[17]  E. Stiefel,et al.  Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems , 1959 .

[18]  H. A. van der Vorst,et al.  Parallel Iterative Solution Methods for Linear Systems arising from Discretized PDE's , 1995 .

[19]  Wim Vanroose,et al.  Hiding Global Communication Latency in the GMRES Algorithm on Massively Parallel Machines , 2013, SIAM J. Sci. Comput..

[20]  Victor Eijkhout,et al.  LAPACK Working Note 56: Reducing Communication Costs in the Conjugate Gradient Algorithm on Distributed Memory Multiprocessors , 1993 .

[21]  Gerard L. G. Sleijpen,et al.  BiCGstab(l) and other hybrid Bi-CG methods , 1994, Numerical Algorithms.

[22]  C. Paige Error Analysis of the Lanczos Algorithm for Tridiagonalizing a Symmetric Matrix , 1976 .

[23]  Y. Saad,et al.  Practical Use of Polynomial Preconditionings for the Conjugate Gradient Method , 1985 .

[24]  Zdenek Strakos,et al.  Accuracy of Two Three-term and Three Two-term Recurrences for Krylov Space Solvers , 2000, SIAM J. Matrix Anal. Appl..

[25]  Erin Carson,et al.  Communication-Avoiding Krylov Subspace Methods in Theory and Practice , 2015 .

[26]  E. Stiefel,et al.  Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme , 1955 .

[27]  J. Vanrosendale,et al.  Minimizing inner product data dependencies in conjugate gradient iteration , 1983 .

[28]  Qiang Ye,et al.  Residual Replacement Strategies for Krylov Subspace Iterative Methods for the Convergence of True Residuals , 2000, SIAM J. Sci. Comput..

[29]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[30]  Z. Strakos,et al.  On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .

[31]  Magnus R. Hestenes,et al.  Iterative methods for solving linear equations , 1973 .

[32]  Iain S. Duff,et al.  Users' guide for the Harwell-Boeing sparse matrix collection (Release 1) , 1992 .

[33]  Gerard L. G. Sleijpen,et al.  Reliable updated residuals in hybrid Bi-CG methods , 1996, Computing.

[34]  John Shalf,et al.  The International Exascale Software Project roadmap , 2011, Int. J. High Perform. Comput. Appl..

[35]  Stephen Johnson,et al.  Communication latency hiding in a parallel conjugate gradient method , 1999 .

[36]  Dennis Gannon,et al.  Parallel Architectures for Iterative Methods on Adaptive, Block Structured Grids , 1984 .

[37]  Valérie Frayssé,et al.  Inexact Matrix-Vector Products in Krylov Methods for Solving Linear Systems: A Relaxation Strategy , 2005, SIAM J. Matrix Anal. Appl..

[38]  Z. Strakos,et al.  Krylov Subspace Methods: Principles and Analysis , 2012 .

[39]  Valeria Simoncini,et al.  Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing , 2003, SIAM J. Sci. Comput..

[40]  Grey Ballard,et al.  Avoiding Communication in Dense Linear Algebra , 2013 .

[41]  Mark Hoemmen,et al.  Communication-avoiding Krylov subspace methods , 2010 .

[42]  W. Marsden I and J , 2012 .

[43]  Lennart Johnsson HIGHLY CONCURRENT ALGORITHMS FOR SOLVING LINEAR SYSTEMS OF EQUATIONS , 1984 .

[44]  E. F. DAzevedo,et al.  Reducing communication costs in the conjugate gradient algorithm on distributed memory multiprocessors , 1992 .

[45]  Christopher C. Paige,et al.  The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .

[46]  Anthony T. Chronopoulos,et al.  s-step iterative methods for symmetric linear systems , 1989 .

[47]  Zdenek Strakos,et al.  Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs , 2014, SIAM spotlights.

[48]  Z. Strakos,et al.  On the real convergence rate of the conjugate gradient method , 1991 .

[49]  A. Greenbaum Estimating the Attainable Accuracy of Recursively Computed Residual Methods , 1997, SIAM J. Matrix Anal. Appl..

[50]  David M. Young,et al.  Applied Iterative Methods , 2004 .

[51]  B. Fischer Polynomial Based Iteration Methods for Symmetric Linear Systems , 1996 .