Bivariate Splines of Various Degrees for Numerical Solution of Partial Differential Equations
暂无分享,去创建一个
Danfu Han | Xianliang Hu | Mingjun Lai | Xianliang Hu | Danfu Han | M. Lai
[1] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[2] M. Rivara. Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .
[3] Jens Markus Melenk,et al. hp-Finite Element Methods for Singular Perturbations , 2002 .
[4] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[5] Ming-Jun Lai,et al. The Multivariate Spline Method for Scattered Data Fitting and Numerical Solutions of Partial Differential Equations , 2006 .
[6] Ming-Jun Lai,et al. Geometric interpretation of smoothness conditions of triangular polynomial patches , 1997, Comput. Aided Geom. Des..
[7] Isaac Harari,et al. High-Order Finite Element Methods for Acoustic Problems , 1997 .
[8] L. Schumaker,et al. Spline Functions on Triangulations: Cr Macro-element Spaces , 2007 .
[9] Larry L. Schumaker,et al. On the approximation power of bivariate splines , 1998, Adv. Comput. Math..
[10] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[11] Rolf Rannacher,et al. A General Concept of Adaptivity in Finite Element Methods with Applications to Problems in Fluid and Structural Mechanics , 1999 .
[12] Ming-Jun Lai,et al. Bivariate splines for fluid flows , 2004 .
[13] Gerald Farin,et al. Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..
[14] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .