Variational quantum solver employing the PDS free energy functional

In our previous work (J. Chem. Phys. 2020, 153, 201102), we reported a new class of quantum algorithms that are based on the quantum computation of the connected moment expansion to find the ground and excited state energies. In particular, the Peeters-Devreese-Soldatov (PDS) formulation is found variational and bearing the potential for further combining with the existing variational quantum infrastructure. Following this direction, here we propose a variational quantum solver employing the PDS energy gradient. In comparison with the usual variational quantum eigensolver (VQE) and the original static PDS approach, the proposed variational quantum solver offers an effective approach to achieve high accuracy at finding the ground state and its energy through the rotation of the trial wave function of modest quality guided by the low order PDS energy gradients, thus improves the accuracy and efficiency of the quantum simulation. We demonstrate the performance of the proposed variational quantum solver for toy models, H2 molecule, and strongly correlated planar H4 system in some challenging situations. In all the case studies, the proposed variational quantum approach outperforms the usual VQE and static PDS calculations even at the lowest order.

[1]  J. Biamonte,et al.  On barren plateaus and cost function locality in variational quantum algorithms , 2020, Journal of Physics A: Mathematical and Theoretical.

[2]  Nathan Wiebe,et al.  Entanglement Induced Barren Plateaus , 2020, PRX Quantum.

[3]  B. Peng,et al.  Quantum simulations employing connected moments expansions. , 2020, The Journal of chemical physics.

[4]  O. Kyriienko,et al.  Hamiltonian Operator Approximation for Energy Measurement and Ground-State Preparation , 2020, PRX Quantum.

[5]  Patrick J. Coles,et al.  Impact of Barren Plateaus on the Hessian and Higher Order Derivatives. , 2020 .

[6]  S. Yunoki,et al.  Quantum Power Method by a Superposition of Time-Evolved States , 2020, 2008.03661.

[7]  Patrick J. Coles,et al.  Noise-induced barren plateaus in variational quantum algorithms , 2020, Nature Communications.

[8]  Akira Sone,et al.  Cost-Function-Dependent Barren Plateaus in Shallow Quantum Neural Networks , 2020, ArXiv.

[9]  Francesco A. Evangelista,et al.  Exact parameterization of fermionic wave functions via unitary coupled cluster theory. , 2019, The Journal of chemical physics.

[10]  K. B. Whaley,et al.  A non-orthogonal variational quantum eigensolver , 2019, New Journal of Physics.

[11]  Peter L. McMahon,et al.  Quantum Filter Diagonalization: Quantum Eigendecomposition without Full Quantum Phase Estimation , 2019, 1909.08925.

[12]  N. Yamamoto On the natural gradient for variational quantum eigensolver , 2019, 1909.05074.

[13]  J. Gambetta,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[14]  Oleksandr Kyriienko,et al.  Quantum inverse iteration algorithm for near-term quantum devices , 2019 .

[15]  F. Brandão,et al.  Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution , 2019, Nature Physics.

[16]  Harper R. Grimsley,et al.  An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2018, Nature Communications.

[17]  C. Gogolin,et al.  Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.

[18]  K. B. Whaley,et al.  Generalized Unitary Coupled Cluster Wave functions for Quantum Computation. , 2018, Journal of chemical theory and computation.

[19]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[20]  Ying Li,et al.  Variational ansatz-based quantum simulation of imaginary time evolution , 2018, npj Quantum Information.

[21]  H. Neven,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[22]  H. Neven,et al.  Low-Depth Quantum Simulation of Materials , 2018 .

[23]  Jonathan Carter,et al.  Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm , 2018 .

[24]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[25]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[26]  J. Gambetta,et al.  Tapering off qubits to simulate fermionic Hamiltonians , 2017, 1701.08213.

[27]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[28]  Mikhail Smelyanskiy,et al.  Practical optimization for hybrid quantum-classical algorithms , 2017, 1701.01450.

[29]  Mikhail Smelyanskiy,et al.  High Performance Emulation of Quantum Circuits , 2016, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis.

[30]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[31]  M. Yung,et al.  Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure , 2015, 1506.00443.

[32]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[33]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[34]  Andrew M. Childs On the Relationship Between Continuous- and Discrete-Time Quantum Walk , 2008, 0810.0312.

[35]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[36]  Luis,et al.  Optimum phase-shift estimation and the quantum description of the phase difference. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[37]  A. Soldatov GENERALIZED VARIATIONAL PRINCIPLE IN QUANTUM MECHANICS , 1995 .

[38]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[39]  Werner Kutzelnigg,et al.  Error analysis and improvements of coupled-cluster theory , 1991 .

[40]  Rodney J. Bartlett,et al.  Alternative coupled-cluster ansätze II. The unitary coupled-cluster method , 1989 .

[41]  J. Devreese,et al.  Upper bounds for the free energy. A generalisation of the Bogolubov inequality and the Feynman inequality , 1984 .

[42]  Damian S. Steiger,et al.  Fast Quantum Algorithm for Spectral Properties , 2017 .

[43]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[44]  Andrew G. Taube,et al.  New perspectives on unitary coupled‐cluster theory , 2006 .