Tensile testing of individual glassy, rubbery and hydrogel electrospun polymer nanofibres to high strain using the atomic force microscope

Abstract The production and use of polymer nanofibre assemblies prepared by electrospinning is now widespread. It is known that the tensile properties of electrospun polymer fibres can be different to those of bulk polymers. Here, we report a general method for measuring the tensile properties of individual electrospun nanofibres that employs a commercial atomic force microscope. Methods for preparing samples, force calibration and calculation of tensile stress and strain are described along with error estimation. By appropriate choice of AFM cantilever, it is shown that the tensile stress-strain curves can be measured for glassy, rubbery and gel polymer nanofibres. Testing can be in air or fluid and to strains of 300%. Example results illustrate the usefulness of the technique with the observation of high ductility in normally brittle glassy polymers such as polystyrene, and unusually large hysteresis in thermoplastic elastomer nanofibres. These observations provide new insights into the structure and mechanical behaviour of nanoscale polymeric materials.

[1]  Seeram Ramakrishna,et al.  Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. , 2006, Tissue engineering.

[2]  Strength and failure of fibrin fiber branchpoints , 2010, Journal of thrombosis and haemostasis : JTH.

[3]  Robert W. Carpick,et al.  Lateral force calibration in atomic force microscopy: A new lateral force calibration method and general guidelines for optimization , 2006 .

[4]  H. Kahn,et al.  Novel method for mechanical characterization of polymeric nanofibers. , 2007, The Review of scientific instruments.

[5]  Asa H. Barber,et al.  Nano-mechanical properties of individual mineralized collagen fibrils from bone tissue , 2011, Journal of The Royal Society Interface.

[6]  Myung-Seob Khil,et al.  Electrospun nanofibrous polyurethane membrane as wound dressing. , 2003, Journal of biomedical materials research. Part B, Applied biomaterials.

[7]  Y. Cohen,et al.  Tensile deformation of electrospun nylon‐6,6 nanofibers , 2006 .

[8]  Jun Kameoka,et al.  Measurement of the Young’s moduli of individual polyethylene oxide and glass nanofibres , 2005 .

[9]  K. Leong,et al.  Electrohydrodynamics: A facile technique to fabricate drug delivery systems. , 2009, Advanced drug delivery reviews.

[10]  K. V. Van Vliet,et al.  Robust approach to maximize the range and accuracy of force application in atomic force microscopes with nonlinear position-sensitive detectors , 2006 .

[11]  J. Bagdahn,et al.  Tensile testing of individual ultrathin electrospun poly(L‐lactic acid) fibers , 2009 .

[12]  J. Coleman,et al.  Strong, Tough, Electrospun Polymer–Nanotube Composite Membranes with Extremely Low Density , 2008 .

[13]  T. C. McIlvaine,et al.  A BUFFER SOLUTION FOR COLORIMETRIC COMPARISON , 1921 .

[14]  Forrest,et al.  Reductions of the glass transition temperature in thin polymer films: probing the length scale of cooperative dynamics , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Mao-Sung Wu,et al.  Electrodeposition of iron oxide nanorods on carbon nanofiber scaffolds as an anode material for lithium-ion batteries , 2010 .

[16]  Philip G. Whitten,et al.  Actuating individual electrospun hydrogel nanofibres , 2012 .

[17]  Russell M. Taylor,et al.  Stiffening of individual fibrin fibers equitably distributes strain and strengthens networks. , 2010, Biophysical journal.

[18]  P. Gatenholm,et al.  Biodegradable Polymeric Micro-Nanofibers by Electrospinning of Polyester/Polyether Block Copolymers , 2008 .

[19]  M. Naraghi,et al.  Molecular orientation and mechanical property size effects in electrospun polyacrylonitrile nanofibers , 2011 .

[20]  Heh Han Meijer,et al.  On the origin of strain hardening in glassy polymers , 2003 .

[21]  D. Carroll,et al.  The mechanical properties of individual, electrospun fibrinogen fibers. , 2009, Biomaterials.

[22]  Measuring size-dependent mechanical properties of electrospun polystyrene fibers using in-situ AFM-SEM , 2012 .

[23]  Wei Wang,et al.  Measurement of size‐dependent glass transition temperature in electrospun polymer fibers using AFM nanomechanical testing , 2012 .

[24]  John S. Villarrubia,et al.  Nanoindentation of polymers: an overview , 2001 .

[25]  G. Michler,et al.  Micromechanical properties and ductile behavior of electrospun polystyrene nanofibers , 2012 .

[26]  C T Laurencin,et al.  Electrospun nanofiber scaffolds: engineering soft tissues , 2008, Biomedical materials.

[27]  W. Park,et al.  Exploring Nanomechanical Behavior of Silicon Nanowires: AFM Bending Versus Nanoindentation , 2011 .

[28]  G. Wallace,et al.  Highly Stretchable Conducting SIBS‐P3HT Fibers , 2011 .

[29]  Liwen Ji,et al.  Electrocatalytic properties of Pt/carbon composite nanofibers , 2009 .

[30]  H. C. Foley,et al.  Mechanical testing of pyrolysed poly-furfuryl alcohol nanofibres , 2007 .

[31]  Tong Lin,et al.  Electrospun single-walled carbon nanotube/polyvinyl alcohol composite nanofibers: structure–property relationships , 2008, Nanotechnology.

[32]  Yiu-Wing Mai,et al.  Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties , 2010 .

[33]  Martin Munz,et al.  Force calibration in lateral force microscopy: a review of the experimental methods , 2010 .

[34]  J. Coleman,et al.  Mechanical properties of individual electrospun polymer-nanotube composite nanofibers , 2009 .

[35]  R. Farris,et al.  Mechanical behavior of electrospun polyurethane , 2003 .

[36]  H. Wagner,et al.  Mechanics of electrospun collagen and hydroxyapatite/collagen nanofibers. , 2012, Journal of the mechanical behavior of biomedical materials.

[37]  Chi-Hwa Wang,et al.  Electrospun Micro- and Nanofibers for Sustained Delivery of Paclitaxel to Treat C6 Glioma in Vitro , 2006, Pharmaceutical Research.

[38]  Emilie J. Siochi,et al.  Electrospinning of a micro-air vehicle wing skin , 2003 .

[39]  J. Boland,et al.  A generalized description of the elastic properties of nanowires. , 2006, Nano letters.

[40]  Min Kyoon Shin,et al.  Size-dependent elastic modulus of single electroactive polymer nanofibers , 2006 .

[41]  David G Simpson,et al.  Nanofiber technology: designing the next generation of tissue engineering scaffolds. , 2007, Advanced drug delivery reviews.

[42]  Cato T Laurencin,et al.  Electrospun nanofibrous structure: a novel scaffold for tissue engineering. , 2002, Journal of biomedical materials research.

[43]  Anna Merzlyak,et al.  Genetically engineered nanofiber-like viruses for tissue regenerating materials. , 2009, Nano letters.

[44]  Jiang Chang,et al.  Electrospun nanofibrous materials for tissue engineering and drug delivery , 2010, Science and technology of advanced materials.

[45]  M. Shamsipur,et al.  Preparation of polyaniline nanofibers and their use as a cathode of aqueous rechargeable batteries , 2006 .

[46]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[47]  John E Sader,et al.  Mechanical properties of ZnO nanowires. , 2008, Physical review letters.

[48]  C. Lim,et al.  Mechanical properties of electrospun collagen–chitosan complex single fibers and membrane , 2009 .

[49]  O. Chauvet,et al.  Physical properties of conducting polymer nanofibers , 2003 .

[50]  P. McHugh,et al.  Computational Investigation of the Delamination of Polymer Coatings During Stent Deployment , 2010, Annals of Biomedical Engineering.

[51]  Maurizio Prato,et al.  Tensile Mechanics of Electrospun Multiwalled Nanotube/Poly(methyl methacrylate) Nanofibers , 2007 .

[52]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[53]  Horst A von Recum,et al.  Electrospinning: applications in drug delivery and tissue engineering. , 2008, Biomaterials.

[54]  S. Ramakrishna,et al.  Applications of polymer nanofibers in biomedicine and biotechnology , 2005, Applied biochemistry and biotechnology.

[55]  Tae Gwan Park,et al.  Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. , 2009, Advanced drug delivery reviews.

[56]  M. Dickinson,et al.  Probing more than the surface , 2009 .

[57]  Anthony S Weiss,et al.  Electrospun protein fibers as matrices for tissue engineering. , 2005, Biomaterials.

[58]  C. Lim,et al.  Mechanical properties of single electrospun drug-encapsulated nanofibres , 2006, Nanotechnology.

[59]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[60]  D. Mihailovic,et al.  Shear and Young's Moduli of MoS2 Nanotube Ropes , 2003 .

[61]  W. Sigmund,et al.  Three-point bending of electrospun TiO2 nanofibers , 2005 .

[62]  David L Kaplan,et al.  Human bone marrow stromal cell responses on electrospun silk fibroin mats. , 2004, Biomaterials.

[63]  Crosslinking neat ultrathin films and nanofibres of pH-responsive poly(acrylic acid) by UV radiation , 2010 .

[64]  Jiazang Chen,et al.  Polyaniline nanofiber/carbon film as flexible counter electrodes in platinum-free dye-sensitized solar cells , 2011 .

[65]  Kyungmin Park,et al.  Multifunctional Hybrid Fabrics with Thermally Stable Superhydrophobicity , 2010, Advanced materials.

[66]  Deron A. Walters,et al.  Elastic strain of freely suspended single-wall carbon nanotube ropes , 1999 .

[67]  Michel Godin,et al.  Calibrating laser beam deflection systems for use in atomic force microscopes and cantilever sensors , 2006 .

[68]  Eyal Zussman,et al.  Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers , 2005 .

[69]  C. Lim,et al.  Tensile testing of a single ultrafine polymeric fiber. , 2005, Biomaterials.

[70]  Keith Bonin,et al.  Easy and direct method for calibrating atomic force microscopy lateral force measurements. , 2007, The Review of scientific instruments.

[71]  Bin Wu,et al.  Mechanical properties of ultrahigh-strength gold nanowires , 2005, Nature materials.

[72]  G. McClelland,et al.  Atomic-scale friction of a tungsten tip on a graphite surface. , 1987, Physical review letters.

[73]  Meghana Kakade,et al.  Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers. , 2007, Journal of the American Chemical Society.

[74]  C. Lim,et al.  Mechanical characterization of nanofibers – A review , 2006 .

[75]  F. Besenbacher,et al.  Molecular filters based on cyclodextrin functionalized electrospun fibers , 2009 .

[76]  A. Sippel Physical properties of polymers , 1958 .

[77]  K. Méténier,et al.  Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes , 1999 .