Erosion/redeposition analysis of the ITER first wall with convective and non-convective plasma transport

Sputtering erosion/redeposition is analyzed for IAEA [Report GA10FDR1-01-07-13 (2001)] plasma facing components, with scrape-off layer (SOL) plasma convective radial transport and nonconvective (diffusion-only) transport. The analysis uses the UEDGE code [T .D. Rognlien et al., J. Nucl. Mater. 196, 347 (1992)] and DEGAS code [D. P. Stotler et al., Contrib. Plasma Phys. 40, 221 (2000) ] to compute plasma SOL profiles and ion and neutral fluxes to the wall, TRIM-SP code [J. P. Biersack, W. Eckstein, J. Appl. Phys. A34, 73 (1984)] to compute sputter yields, and the REDEP/WBC code package [J. N. Brooks, Fusion Eng. Des. 60, 515 (2002)] for three-dimensional kinetic modeling of sputtered particle transport. Convective transport is modeled for the background plasma by a radially varying outward-flow component of the fluid velocity, and for the impurity ions by three models designed to bracket existing models/data. Results are reported here for the first wall with the reference beryllium coating and an alternati...

[1]  F. Khoury Crystal Habits and Morphology of n‐Tetranonacontane (n‐C94H190) , 1963 .

[2]  G. Dollinger,et al.  Codeposition of hydrogen with beryllium, carbon and tungsten , 1996 .

[3]  J. Milovich,et al.  A fully implicit, time dependent 2-D fluid code for modeling tokamak edge plasmas , 1992 .

[4]  W. K. Terry,et al.  Interaction of impurity ions with a weakly non‐Maxwellian simple hydrogenic plasma , 1988 .

[5]  D. G. Whyte,et al.  Comparison of particle transport in the scrape-off layer plasmas of Alcator C-Mod and DIII-D , 2005 .

[6]  L. L. LoDestro,et al.  Simulation of Plasma Fluxes to Material Surfaces with Self-consistent Edge Turbulence and Transport for Tokamaks , 2004 .

[7]  Radiation effects. , 1982, Science.

[8]  R. Doerner The implications of mixed-material plasma-facing surfaces in ITER , 2007 .

[9]  David S. Walsh,et al.  Codeposition of deuterium with beryllium , 1998 .

[10]  R. Causey,et al.  Hydrogen isotope retention and recycling in fusion reactor plasma-facing components , 2002 .

[11]  H. Oechsner,et al.  The bombarding-angle dependence of sputtering yields under various surface conditions , 1987 .

[12]  Daren P. Stotler,et al.  Coupling of Parallelized DEGAS 2 and UEDGE Codes , 1999 .

[13]  T. Rognlien,et al.  Implications of convective scrape-off layer transport for fusion reactors with solid and liquid walls , 2004 .

[14]  R. H. Bulmer,et al.  Scrape-off layer plasmas for ITER with 2nd X-point and convective transport effects , 2006 .

[15]  Jeffrey N. Brooks,et al.  Modeling of sputtering erosion/redeposition—status and implications for fusion design , 2002 .

[16]  W. West,et al.  Multi-ion fluid simulation of tokamak edge plasmas including non-diffusive anomalous cross-field transport , 2005 .

[17]  T. Evans,et al.  TRANSPORT BY INTERMITTENCY IN THE BOUNDARY OF THE DIII-D TOKAMAK , 2002 .

[18]  S. Luckhardt,et al.  Experimental evidence of intermittent convection in the edge of magnetic confinement devices. , 2001, Physical review letters.

[19]  C. H. Skinner,et al.  Plasma{material interactions in current tokamaks and their implications for next step fusion reactors , 2001 .

[20]  M. Mayer,et al.  Codeposition of deuterium with BeO at elevated temperatures , 1997 .

[21]  D. A. Alman,et al.  Erosion, transport, and tritium codeposition analysis of a beryllium wall tokamak , 2005 .