Modeling the Radar Signature of Raindrops in Aircraft Wake Vortices

AbstractThe present work is dedicated to the modeling and simulation of the radar signature of raindrops within wake vortices. This is achieved through the computation of the equation of raindrop motion within the wake vortex flow. Based on the inhomogeneous distribution of raindrops within wake vortices, the radar echo model is computed for raindrops in a given resolution cell. Simulated Doppler radar signatures of raindrops within wake vortices are shown to be a potential criterion for identifying wake vortex hazards in air traffic control. The dependence of the radar signature on various parameters, including the radial resolution and antenna elevation angle, is also analyzed.

[1]  Michele D'Amico,et al.  A Multiparameter Polarimetric Radar Simulator , 2001 .

[2]  K. Gunn,et al.  The microwave properties of precipitation particles , 1954 .

[3]  Thomas Gerz,et al.  Commercial aircraft wake vortices , 2002 .

[4]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .

[5]  R. Marshall,et al.  Wingtip generated wake vortices as radar targets , 1996 .

[6]  A Hinton David,et al.  A Candidate Wake Vortex Strength Definition for Application to the NASA Aircraft Vortex Spacing System (AVOSS) , 1997 .

[7]  Frederic Barbaresco,et al.  Optimising runway throughput through wake vortex detection, prediction and decision support tools , 2011, 2011 Tyrrhenian International Workshop on Digital Communications - Enhanced Surveillance of Aircraft and Vehicles.

[8]  Frederic Barbaresco,et al.  Radar monitoring of a wake vortex: Electromagnetic reflection of wake turbulence in clear air , 2010 .

[9]  Barbaresco Frederic,et al.  Model for the calculation of the radar cross section of wake vortices of take-off and landing airplanes , 2012 .

[10]  A. Bemis Radar in Meteorology , 1955, Transactions of the IRE Professional Group on Communications Systems.

[11]  J. Hardin,et al.  Spectral Characteristics of Wake Vortex Sound During Roll-Up , 2013 .

[12]  F. J. Marcotte,et al.  Aircraft Wake Detection Using Bistatic Radar: Analysis of Experimental Results , 1998 .

[13]  Michele D'Amico,et al.  A Physically Based Radar Simulator , 1998 .

[14]  Fang Fang RAINDROP SIZE DISTRIBUTION RETRIEVAL AND EVALUATION USING AN S-BAND RADAR PROFILER , 2004 .

[15]  Yadong Wang,et al.  Characterization of Tornado Spectral Signatures Using Higher-Order Spectra , 2007 .

[16]  David K. Rutishauser,et al.  Meteorology and Wake Vortex Influence on American Airlines FL-587 Accident , 2013 .

[17]  D. Schertzer,et al.  Turbulence, raindrops and the l1/2 number density law , 2008 .

[18]  B. Hudson,et al.  Doppler radar detection of vortex hazard indicators , 1994 .

[19]  Frédéric Barbaresco,et al.  Wake vortex detection & monitoring by X-band Doppler radar : Paris Orly radar campaign results , 2007 .

[20]  Wayne A. Scales,et al.  Determination of aircraft wake vortex radar cross section due to coherent Bragg scatter from mixed atmospheric water vapor , 1999 .

[21]  Mark A. Richards,et al.  Principles of Modern Radar: Basic Principles , 2013 .

[22]  D. J. Shephard,et al.  Radar wake vortex measurements at F and I band , 1994 .

[23]  William L. Rubin,et al.  Radar–Acoustic Detection of Aircraft Wake Vortices , 2000 .

[24]  D. Zrnic,et al.  Doppler weather radar , 1979, Proceedings of the IEEE.

[25]  A. R. Jameson,et al.  Partially Coherent Backscatter in Radar Observations of Precipitation , 2010 .

[26]  R. Frehlich,et al.  Maximum Likelihood Estimates of Vortex Parameters from Simulated Coherent Doppler Lidar Data , 2005 .

[27]  Tao Wang,et al.  Modeling the Dielectric Constant Distribution of Wake Vortices , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[28]  Curtis R. Alexander,et al.  Centrifuging of Hydrometeors and Debris in Tornadoes: Radar-Reflectivity Patterns and Wind-Measurement Errors , 2005 .

[29]  Stuart Bradley,et al.  Sodar Measurements of Wing Vortex Strength and Position , 2007 .

[30]  P. Owolawi Characteristics of rain at microwave and millimetric bands for terrestrial and satellite links attenuation in South Africa and surrounding islands. , 2010 .

[31]  Matsuo Sekine,et al.  Weibull raindrop-size distribution and its application to rain attenuation , 1997 .

[32]  Anatoliy V. Bobylev,et al.  Aircraft Vortex Wake and Flight Safety Problems , 2010 .

[33]  R. C. Srivastava,et al.  Doppler radar characteristics of precipitation at vertical incidence , 1973 .

[34]  Eike Stumpf,et al.  Strategies for Circulation Evaluation of Aircraft Wake Vortices Measured by Lidar , 2003 .

[35]  Alan A. Wray,et al.  Analysis of the radar reflectivity of aircraft vortex wakes , 2002, Journal of Fluid Mechanics.

[36]  James B. Mead Meter-scale Observations of Aircraft Wake Vortices in Precipitation using a High Resolution Solid-State W-band Radar , 2009 .

[37]  Frank J. Marcotte,et al.  Aircraft Wake Vortex Detection Using Continuous-Wave Radar , 1997 .

[38]  Tao Wang,et al.  Study on the scattering characteristics of stable-stage wake vortices , 2009, 2009 International Radar Conference "Surveillance for a Safer World" (RADAR 2009).

[39]  Tao Wang,et al.  Notice of RetractionSimulation on the evolution and RCS of aircraft wake vortices , 2010, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010).

[40]  F. Barbaresco,et al.  Wake Vortex Profiling by Doppler X-band radar : Orly trials at Initial Take-Off & ILS interception critical areas , 2008, 2008 IEEE Radar Conference.