Construction of 3D Triangles on Dupin Cyclides

This paper considers the conversion of the parametric Bezier surfaces, classically used in CAD-CAM, into patched of a class of non-spherical degree 4 algebraic surfaces called Dupin cyclides, and the definition of 3D triangle with circular edges on Dupin cyclides. Dupin cyclides was discovered by the French mathematician Pierre-Charles Dupin at the beginning of the 19th century. A Dupin cyclide has one parametric equation, two implicit equations, and a set of circular lines of curvature. The authors use the properties of these surfaces to prove that three families of circles meridian arcs, parallel arcs, and Villarceau circles can be computed on every Dupin cyclide. A geometric algorithm to compute these circles so that they define the edges of a 3D triangle on the Dupin cyclide is presented. Examples of conversions and 3D triangles are also presented to illustrate the proposed algorithms.

[1]  Toufik Taibi Design Pattern Formalization Techniques , 2007 .

[2]  Aboul Ella Hassanien,et al.  A Blind 3D Watermarking Approach for 3D Mesh Using Clustering Based Methods , 2013, Int. J. Comput. Vis. Image Process..

[3]  Sebti Foufou,et al.  Conversion d'un carreau de Bézier rationnel biquadratique en un carreau de cyclide de Dupin quartique , 2006, Tech. Sci. Informatiques.

[4]  Ching-Kuang Shene Blending two cones with Dupin cyclides , 1998, Comput. Aided Geom. Des..

[5]  Sebti Foufou,et al.  Conversion of biquadratic rational Bézier surfaces into patches of particular Dupin cyclides: The torus and the double sphere , 2009 .

[6]  Marcelo Saval-Calvo,et al.  Comparative Analysis of Temporal Segmentation Methods of Video Sequences , 2013 .

[7]  Gudrun Albrecht,et al.  Construction of Bézier rectangles and triangles on the symmetric Dupin horn cyclide by means of inversion , 1997, Comput. Aided Geom. Des..

[8]  Charles baron Dupin,et al.  Applications de géométrie et de méchanique, à la marine, aux ponts et chaussées, etc., pour faire suite aux développements de géométrie , 1822 .

[9]  Dimitrios I. Fotiadis,et al.  Intravascular Imaging: Current Applications and Research Developments , 2011 .

[10]  Ralph R. Martin,et al.  Cyclides in surface and solid modeling , 1993, IEEE Computer Graphics and Applications.

[11]  Juan José Moreno-Navarro,et al.  Modeling and Reasoning about Design Patterns in Slam-Sl , 2007 .

[12]  Sebti Foufou,et al.  Conversion of Dupin Cyclide Patches into Rational Biquadratic Bézier Form , 2005, IMA Conference on the Mathematics of Surfaces.

[13]  Muhammad Sarfraz Intelligent Computer Vision and Image Processing: Innovation, Application, and Design , 2013 .

[14]  M. J. Pratt,et al.  Cyclides in computer aided geometric design , 1990, Comput. Aided Geom. Des..

[15]  Gerald Farin,et al.  NURBS: From Projective Geometry to Practical Use , 1999 .

[16]  Josiane Zerubia,et al.  A Marked Point Process Model Including Strong Prior Shape Information Applied to Multiple Object Extraction From Images , 2011, Int. J. Comput. Vis. Image Process..

[17]  Nello Cristianini,et al.  Kernel Methods: A Paradigm for Pattern Analysis , 2006 .

[18]  José Luis Rojo-Álvarez,et al.  Kernel Methods in Bioengineering, Signal And Image Processing , 2007 .

[19]  Yvon Voisin,et al.  An Evaluation Framework and a Benchmark for Multi/Hyperspectral Image Compression , 2011, Int. J. Comput. Vis. Image Process..

[20]  J. García-Rodríguez,et al.  Learning Robot Vision for Assisted Living , 2013 .