Defying Upward and Downward Separation

Upward and downward separation results link the collapse of small and large classes, and are a standard tool in complexity theory. We study the limitations of upward and downward separation. .pp We show that the exponential-time limited nondeterminism hierarchy does not robustly possess downward separation. We show that probabilistic classes do not robustly possess Hartmanis-Immerman-Sewelson upward separation. Though NP is known to robustly possess Hartmanis-Immerman-Sewelson upward separation, we show that NP does not robustly possess Hartmanis-Immerman-Sewelson upward separation with respect to strong (immunity) separation. On the other hand, we provide a structural sufficient condition for upward separation.

[1]  Juris Hartmanis,et al.  Complexity Classes without Machines: On Complete Languages for UP , 1988, Theor. Comput. Sci..

[2]  Lane A. Hemaspaandra,et al.  Threshold Computation and Cryptographic Security , 1993, ISAAC.

[3]  Osamu Watanabe,et al.  Relating Equivalence and Reducibility to Sparse Sets , 1992, SIAM J. Comput..

[4]  José L. Balcázar,et al.  Immunity and Simplicity in Relativizations of Probabilistic Complexity Classes , 1988, RAIRO Theor. Informatics Appl..

[5]  Lane A. Hemachandra,et al.  The strong exponential hierarchy collapses , 1989 .

[6]  Ronald V. Book,et al.  Tally Languages and Complexity Classes , 1974, Inf. Control..

[7]  John G. Geske,et al.  Almost-Everywhere Complexity, Bi-Immunity and Nondeterministic Space , 1991, ICCI.

[8]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[9]  William I. Gasarch Oracles for Deterministic versus Alternating Classes , 1987, SIAM J. Comput..

[10]  Ker-I Ko,et al.  On Sets Truth-Table Reducible to Sparse Sets , 1988, SIAM J. Comput..

[11]  Vivian Sewelson A Study of the Structure of NP , 1993 .

[12]  Michael Sipser,et al.  On Relativization and the Existence of Complete Sets , 1982, ICALP.

[13]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[14]  Wojciech Kowalczyk,et al.  Some Connections between Representability of Complexity Classes and the Power of Formal Systems of Reasoning , 1984, MFCS.

[15]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[16]  L. Hemachandra,et al.  Counting in structural complexity theory , 1987 .

[17]  Russell Impagliazzo,et al.  Decision versus search problems in super-polynomial time , 1989, 30th Annual Symposium on Foundations of Computer Science.

[18]  Leslie G. Valiant,et al.  Relative Complexity of Checking and Evaluating , 1976, Inf. Process. Lett..

[19]  John Gill,et al.  Computational Complexity of Probabilistic Turing Machines , 1977, SIAM J. Comput..

[20]  Harry B. Hunt,et al.  The LBA Problem and its Importance in the Theory of Computing , 1973 .

[21]  Pierluigi Crescenzi,et al.  A Uniform Approach to Define Complexity Classes , 1992, Theor. Comput. Sci..

[22]  Neil Immerman,et al.  Sparse Sets in NP-P: EXPTIME versus NEXPTIME , 1985, Inf. Control..

[23]  Yuri Gurevich,et al.  Algebras of feasible functions , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[24]  Eric Allender,et al.  Downward Translations of Equality , 1990, Theor. Comput. Sci..

[25]  R. Solovay,et al.  Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .

[26]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[27]  P. Vitányi,et al.  Applications of Kolmogorov Complexity in the Theory of Computation , 1990 .

[28]  Lane A. Hemaspaandra,et al.  Separating Complexity Classes With Tally Oracles , 1992, Theor. Comput. Sci..

[29]  Klaus Ambos-Spies A Note on the Complete Problems for Complexity Classes , 1986, Inf. Process. Lett..

[30]  Nikolai K. Vereshchagin,et al.  Banishing Robust Turing Completeness , 1992, LFCS.

[31]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[32]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[33]  Patrick C. Fischer,et al.  Refining Nondeterminism in Relativized Polynomial-Time Bounded Computations , 1980, SIAM J. Comput..