On P-Immunity of Exponential Time Complete Sets

We show that every many-one complete set for NEXP (co-NEXP) has an infinite subset in P. We also show that every many-one complete set for EXP has anonsparseinfinite subset in P iff annihilating functions do not exist.

[1]  Juris Hartmanis,et al.  On Isomorphisms and Density of NP and Other Complete Sets , 1977, SIAM J. Comput..

[2]  Jie Wang Polynomial Time Productivity, Approximations, and Levelability , 1992, SIAM J. Comput..

[3]  Jie Wang,et al.  Immunity of Complete Problems , 1994, Inf. Comput..

[4]  Michael J. Fischer,et al.  Separating Nondeterministic Time Complexity Classes , 1978, JACM.

[5]  Steven Homer,et al.  Complete Problems and Strong Polynomial Reducibilities , 1992, SIAM J. Comput..

[6]  Stanislav Zák A Turing machine space hierarchy , 1979, Kybernetika.

[7]  Leonard Berman,et al.  On the structure of complete sets: Almost everywhere complexity and infinitely often speedup , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[8]  H. Buhrman,et al.  Resource bounded reductions , 1993 .

[9]  Stanislav Zák,et al.  A Turing Machine Time Hierarchy , 1983, Theor. Comput. Sci..

[10]  Stuart A. Kurtz,et al.  The ismorphism conjecture fails relative to a random oracle , 1989, STOC '89.

[11]  Edith Hemaspaandra,et al.  Bounded Reductions , 1991, Complexity Theory: Current Research.

[12]  Stuart A. Kurtz,et al.  The isomorphism conjecture fails relative to a random oracle , 1995, JACM.

[13]  Ding-Zhu Du,et al.  On One-Way Functions and Polynomial-Time Isomorphisms , 1986, Theor. Comput. Sci..

[14]  Stuart A. Kurtz,et al.  Every polynomial-time 1-degree collapses iff P=PSPACE , 1989, 30th Annual Symposium on Foundations of Computer Science.

[15]  Uwe Schöning,et al.  Complexity theory: current research , 1993 .

[16]  R. Solovay,et al.  Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .