Towards Accurate Artificial Boundary Conditions for Nonlinear PDEs Through Examples
暂无分享,去创建一个
[1] Jeremie Szeftel. Calcul pseudodifférentiel et paradifférentiel pour l'étude de conditions aux limites absorbantes et de propriétés qualitatives d'équations aux dérivées partielles non linéaires , 2004 .
[2] J. Bony,et al. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .
[3] Thomas Hagstrom,et al. On the accurate long-time solution of the wave equation in exterior domains: asymptotic expansions and corrected boundary conditions , 1994 .
[4] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[5] Jérémie Szeftel,et al. A nonlinear approach to absorbing boundary conditions for the semilinear wave equation , 2006, Math. Comput..
[6] Jeremie Szeftel,et al. Absorbing boundary conditions for nonlinear scalar partial differential equations , 2006 .
[7] A. Majda,et al. Absorbing boundary conditions for the numerical simulation of waves , 1977 .
[8] Christophe Besse,et al. A Review of Transparent and Artificial Boundary Conditions Techniques for Linear and Nonlinear Schrödinger Equations , 2008 .
[9] T. Hagstrom. Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.
[10] S. Tsynkov. Numerical solution of problems on unbounded domains. a review , 1998 .
[11] Houde Han,et al. Absorbing boundary conditions for nonlinear Schrödinger equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[12] B. Engquist,et al. Long-time behaviour of absorbing boundary conditions , 1990 .
[13] Andrew J. Majda,et al. Reflection of singularities at the boundary , 1975 .
[14] A. Majda,et al. Radiation boundary conditions for acoustic and elastic wave calculations , 1979 .
[15] A. Durán,et al. The numerical integration of relative equilibrium solutions. Geometric theory , 1998 .
[16] M. Czubak,et al. PSEUDODIFFERENTIAL OPERATORS , 2020, Introduction to Partial Differential Equations.
[17] Christophe Besse,et al. Unconditionally stable discretization schemes of non-reflecting boundary conditions for the one-dimensional Schrödinger equation , 2003 .
[18] Chunxiong Zheng,et al. Exact nonreflecting boundary conditions for one-dimensional cubic nonlinear Schrödinger equations , 2006, J. Comput. Phys..
[19] Marcus J. Grote,et al. On nonreflecting boundary conditions , 1995 .
[20] G. Mur. Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.
[21] A. Durán,et al. The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation , 2000 .
[22] A. Bayliss,et al. Radiation boundary conditions for wave-like equations , 1980 .
[23] Christophe Besse,et al. Artificial boundary conditions for one-dimensional cubic nonlinear Schrödinger equations , 2006, SIAM J. Numer. Anal..