Refined stellar, orbital and planetary parameters of the eccentric HAT‐P‐2 planetary system

We present refined parameters for the extrasolar planetary system HAT-P-2 (also known as HD 147506), based on new radial velocity and photometric data. HAT-P-2b is a transiting extrasolar planet that exhibits an eccentric orbit. We present a detailed analysis of the planetary and stellar parameters, yielding consistent results for the mass and radius of the star, better constraints on the orbital eccentricity and refined planetary parameters. The improved parameters for the host star are M_★= 1.36 ± 0.04 M_⊙ and R_★= 1.64 ± 0.08 R_⊙, while the planet has a mass of M_p= 9.09 ± 0.24 M_Jup and radius of R_p= 1.16 ± 0.08 R_Jup. The refined transit epoch and period for the planet are E= 245 4387.49375 ± 0.00074 (BJD) and P= 5.6334729 ± 0.0000061 (d), and the orbital eccentricity and argument of periastron are e= 0.5171 ± 0.0033 and ω= 185°.22 ± 0°.95. These orbital elements allow us to predict the timings of secondary eclipses with a reasonable accuracy of ∼15 min. We also discuss the effects of this significant eccentricity including the characterization of the asymmetry in the transit light curve. Simple formulae are presented for the above, and these, in turn, can be used to constrain the orbital eccentricity using purely photometric data. These will be particularly useful for very high precision, space-borne observations of transiting planets.

[1]  J. Valenti,et al.  Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs , 2005 .

[2]  A. Iserles Numerical recipes in C—the art of scientific computing , by W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling. Pp 735. £27·50. 1988. ISBN 0-521-35465-X (Cambridge University Press) , 1989, The Mathematical Gazette.

[3]  A. Pál Properties of analytic transit light-curve models , 2008 .

[4]  A. Claret,et al.  A new non-linear limb-darkening law for LTE stellar atmosphere models III - Sloan filters: Calculations for –5.0 ≤ log [M/H] ≤ +1, 2000 K ≤ T$\mathsf{_{eff}}$ ≤ 50 000 K at several surface gravities , 2004 .

[5]  C. Moutou,et al.  Misaligned spin-orbit in the XO-3 planetary system?† , 2008, Proceedings of the International Astronomical Union.

[6]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[7]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[8]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[9]  S. Lubow,et al.  Evolution of Giant Planets in Eccentric Disks , 2006, astro-ph/0608355.

[10]  Origins of Eccentric Extrasolar Planets: Testing the Planet-Planet Scattering Model , 2007, astro-ph/0703163.

[11]  K. Stanek,et al.  Wide‐Field Millimagnitude Photometry with the HAT: A Tool for Extrasolar Planet Detection , 2004, astro-ph/0401219.

[12]  I. Baraffe,et al.  Structure and evolution of super-Earth to super-Jupiter exoplanets - I. Heavy element enrichment in the interior , 2008, 0802.1810.

[13]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[14]  Aisey M Andel ANALYTIC LIGHTCURVES FOR PLANETARY TRANSIT SEARCHES , 2002 .

[15]  Jozsef Lazar,et al.  System Description and First Light Curves of the Hungarian Automated Telescope, an Autonomous Observatory for Variability Search , 2002, astro-ph/0206001.

[16]  J. Barnes Effects of Orbital Eccentricity on Extrasolar Planet Transit Detectability and Light Curves , 2007, 0708.0243.

[17]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[18]  Massachusetts Institute of Technology,et al.  Improving Stellar and Planetary Parameters of Transiting Planet Systems: The Case of TrES-2 , 2007, 0704.2938.

[19]  J. Beuzit,et al.  HD 80606 b, a planet on an extremely elongated orbit , 2001, astro-ph/0106256.

[20]  Peter R. McCullough,et al.  XO-3b: A Massive Planet in an Eccentric Orbit Transiting an F5 V Star , 2007, 0712.4283.

[21]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[22]  A. Sozzetti,et al.  HD 147506b: A Supermassive Planet in an Eccentric Orbit Transiting a Bright Star , 2007, 0705.0126.

[23]  Per Capita,et al.  About the authors , 1995, Machine Vision and Applications.

[24]  J. Valenti,et al.  Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra , 1996 .

[25]  F. V. Leeuwen,et al.  Hipparcos, the New Reduction of the Raw Data , 2007 .

[26]  R. Paul Butler,et al.  Measurement of the Spin-Orbit Angle of Exoplanet HAT-P-1b , 2008, 0806.1734.

[27]  F. Ochsenbein,et al.  The VizieR database of astronomical catalogues , 2000, astro-ph/0002122.

[28]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[29]  Andras Pal,et al.  Astrometry in Wide‐Field Surveys , 2006 .

[30]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .

[31]  Mark S. Marley,et al.  Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .

[32]  D. Queloz,et al.  Detection of transits of the nearby hot Neptune GJ 436 b , 2007, Astronomy & Astrophysics.

[33]  E. J. Öpik,et al.  Close Binary Systems , 1959 .

[34]  C. Moutou,et al.  Refined parameters and spectroscopic transit of the super-massive planet HD 147506b , 2007, 0707.0679.

[35]  Avi Shporer,et al.  The Transit Light Curve Project. VII. The Not-So-Bloated Exoplanet HAT-P-1b , 2007, 0707.1908.

[36]  F. Rasio,et al.  submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 PLANETARY SYSTEMS IN BINARIES. I. DYNAMICAL CLASSIFICATION , 2022 .

[37]  Michael W. Richmond,et al.  TASS Mark IV Photometric Survey of the Northern Sky , 2006 .

[38]  Solving linearized equations of the N‐body problem using the Lie‐integration method , 2007, 0707.3454.

[39]  M. Barbieri,et al.  HD 17156b: A Transiting Planet with a 21.2 Day Period and an Eccentric Orbit , 2007, 0710.0898.

[40]  John Asher Johnson,et al.  ON THE SPIN–ORBIT MISALIGNMENT OF THE XO-3 EXOPLANETARY SYSTEM , 2009, 0902.3461.

[41]  Tsevi Mazeh,et al.  The Transiting Planets , 2005 .

[42]  Gregory W. Henry Techniques for Automated High-Precision Photometry of Sun-like Stars , 1999 .

[43]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[44]  Jong-Hak Woo,et al.  Y2 Isochrones with an Improved Core Overshoot Treatment , 2004 .

[45]  T. Henning,et al.  Transiting Extrasolar Planets Workshop , 2007 .

[46]  D. Queloz,et al.  HAT-P-5b: A Jupiter-like Hot Jupiter Transiting a Bright Star , 2007, 0710.1841.

[47]  A. Pál An analytical solution for Kepler's problem , 2009 .

[48]  Department of Physics,et al.  HAT-P-7b: An Extremely Hot Massive Planet Transiting a Bright Star in the Kepler Field , 2008, 0803.0746.

[49]  A. Loeb A Dynamical Method for Measuring the Masses of Stars with Transiting Planets , 2005, astro-ph/0501548.

[50]  K. Enya,et al.  Spin-Orbit Alignment for the Eccentric Exoplanet HD 147506b , 2007, 0707.0503.

[51]  Y.-W. Lee,et al.  Toward Better Age Estimates for Stellar Populations: The Y2 Isochrones for Solar Mixture , 2001 .