The evolution of the spectrum of a Frobenius Lie algebra under deformation
暂无分享,去创建一个
[1] A. Makhlouf,et al. Computing the index of Lie algebras , 2010 .
[2] A. Ooms. On frobenius lie algebras , 1980 .
[3] Cohomology of Lie semidirect products and poset algebras , 2014, 1407.0428.
[4] A. Ooms. On Lie algebras having a primitive universal enveloping algebra , 1974 .
[5] Elisabeth Remm,et al. Contact and Frobeniusian forms on Lie groups , 2014 .
[6] Nicholas W. Mayers,et al. The Index and Spectrum of Lie Poset Algebras of Types B, C, and D , 2021, The Electronic Journal of Combinatorics.
[7] A. A. Belavin,et al. Solutions of the classical Yang - Baxter equation for simple Lie algebras , 1982 .
[8] The Principal Element of a Frobenius Lie Algebra , 2008, 0801.4808.
[9] A. Kirillov. Lectures on the Orbit Method , 2004 .
[10] M. Gerstenhaber,et al. Boundary Solutions of the Classical Yang--Baxter Equation , 1996, q-alg/9609014.
[11] D. Panyushev. Inductive Formulas for the Index of Seaweed Lie Algebras , 2001 .
[12] A. Joseph. On semi-invariants and index for biparabolic (seaweed) algebras, II☆ , 2006 .
[13] Vincent E. Coll,et al. The index of Lie poset algebras , 2019, J. Comb. Theory, Ser. A.
[14] Thomas F. Fox. An introduction to algebraic deformation theory , 1993 .
[15] A. Diatta,et al. On properties of principal elements of Frobenius Lie algebras , 2012, 1212.5380.
[16] A. Voronov. Quantizing Deformation Theory II , 2018, Pure and Applied Mathematics Quarterly.
[17] V. Dergachev,et al. Index of Lie algebras of seaweed type. , 2000 .
[18] Vincent E. Coll,et al. The unbroken spectrum of Frobenius seaweeds II: type-B and type-C , 2019, 1907.08775.
[19] L. Verhóczki. Classification of Frobenius Lie algebras of dimension ≤ 6 , 2007 .
[20] Vincent E. Coll,et al. The index of nilpotent Lie poset algebras , 2020, 2004.08512.
[21] A. Nijenhuis,et al. Deformations of Lie Algebra Structures , 1967 .
[22] Bialgebra actions, twists, and universal deformation formulas , 1994, hep-th/9411140.
[23] Vincent E. Coll,et al. The unbroken spectrum of type-A Frobenius seaweeds , 2016, 1606.05397.
[24] Graphs, Frobenius functionals, and the classical Yang-Baxter equation , 2008, 0808.2423.