Considerations on future redefinitions of the kilogram, the mole and of other units

The definitions of some units of the Systeme International are likely to be revised as early as 2011 by basing them on fixed values of fundamental constants of nature, provided experimental realizations are demonstrated with sufficiently small uncertainties. As regards the kilogram, experiments aiming at linking it to the Planck constant and the atomic mass constant are under way in several laboratories. The other units likely to be redefined are the ampere, the kelvin and the mole. We discuss the advantages and disadvantages of different alternatives for revised definitions of the kilogram and the mole. From physical considerations, metrological consequences and ease of understanding, a definition of the kilogram based on the mass of a particle, such as an atom or the electron, is favoured. One of the proposed definitions fixes the value of the Planck constant through the Compton frequency of a material, though unphysical, particle. Finally, a redefinition of the mole, the counting unit of the amount-of-substance, is proposed which fixes the Avogadro constant as a dimensionless number.

[1]  G Gabrielse,et al.  New determination of the fine structure constant from the electron value and QED. , 2006, Physical review letters.

[2]  LETTER TO THE EDITOR: Note on invariant redefinitions of SI base units for both mass and amount of substance , 2006 .

[3]  Blaise Jeanneret,et al.  The quantum Hall effect as an electrical resistance standard , 2001 .

[4]  Peter J. Mohr,et al.  Redefinition of the kilogram: a decision whose time has come , 2005 .

[5]  P. Becker,et al.  Tracing the definition of the kilogram to the Avogadro constant using a silicon single crystal , 2003 .

[6]  C. Bordé Métrologie fondamentale : unités de base et constantes fondamentales , 2004 .

[7]  M. Ferrario,et al.  Trends in high energy particle accelerators , 2003 .

[8]  Tyler B. Coplen,et al.  Atomic Weights of the Elements 1999 , 2001 .

[9]  B. Taylor,et al.  The possible role of the fundamental constants in replacing the kilogram , 1990, IEEE Transactions on Instrumentation and Measurement.

[10]  J. Valdés Features and Future of the International System of Units (SI) , 2005 .

[11]  G. Girard,et al.  INTERNATIONAL REPORT: The Third Periodic Verification of National Prototypes of the Kilogram (1988-1992) , 1994 .

[12]  U. Kuetgens,et al.  Present Status of the a Vogadro Constant Determination from Silicon Crystals with Natural Isotopic Composition , 2004, 2004 Conference on Precision Electromagnetic Measurements.

[13]  Peter J. Mohr,et al.  On the redefinition of the kilogram , 1999 .

[14]  Arnold Nicolaus,et al.  Determination of the Avogadro constant via the silicon route , 2003 .

[15]  Yusaku Fujii,et al.  Evaluation of equilibrium trajectory of superconducting magnetic levitation system for the future kg unit of mass , 2000, IEEE Trans. Instrum. Meas..

[16]  V. Tuninsky Unit systems based on the fundamental constants , 1999 .

[17]  Simon Rainville,et al.  An Ion Balance for Ultra-High-Precision Atomic Mass Measurements , 2004, Science.

[18]  Edwin R. Williams,et al.  Towards an electronic kilogram: an improved measurement of the Planck constant and electron mass , 2005 .

[19]  B. Petley The mole and the unified atomic mass unit , 1996 .

[20]  F. Wilczek Whence the Force of F ⊂ ma? III: Cultural Diversity , 2005 .

[21]  B. Jeckelmann,et al.  Towards a new kilogram definition based on a fundamental constant , 2004 .

[22]  A. H. Wapstra,et al.  The Ame2003 atomic mass evaluation: (I). Evaluation of input data, adjustment procedures☆ , 2003 .

[23]  Asymptotic freedom: From paradox to paradigm , 2005 .

[24]  Bryan Kibble,et al.  A Realization of the SI Watt by the NPL Moving-coil Balance , 1990 .

[25]  P. Bievre,et al.  The reliability of values of molar mass, the factor that relates measurements expressed in two SI base units (mass and amount of substance) , 1997 .

[26]  Re-evaluation of a precise measurement of h/mn , 1999 .

[27]  Bernd R. L. Siebert,et al.  General principles for the definition of the base units in the SI , 2003 .

[28]  A. Wicht,et al.  A Preliminary Measurement of the Fine Structure Constant Based on Atom Interferometry , 2003 .

[29]  Richard Davis,et al.  The SI unit of mass , 2003 .

[30]  C. Bordé,et al.  Base units of the SI, fundamental constants and modern quantum physics , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  L. Okun,et al.  The Concept of Mass , 1989 .

[32]  D. Pritchard,et al.  World Year of Physics: A direct test of E=mc2 , 2005, Nature.

[33]  The kilogram redefinition—an interim solution , 2005 .

[34]  T. Funck,et al.  Determination of the volt with the improved PTB voltage balance , 1990 .

[35]  Robert A. Millikan,et al.  A Direct Photoelectric Determination of Planck's " h " , 1916 .

[36]  J. Wignall An absolute replacement for the standard kilogram , 2005 .

[37]  Frank Wilczek,et al.  Whence the Force of F = ma? I: Culture Shock , 2004 .

[38]  P. D. P. Taylor,et al.  The importance of the Avogadro constant for amount-of-substance measurements , 1998 .

[39]  M. L. Mcglashan,et al.  Amount of Substance and the mole , 1977 .

[40]  A. Peuto,et al.  The molar volume of silicon , 1996, Proceedings of 20th Biennial Conference on Precision Electromagnetic Measurements.

[41]  F. Piquemal,et al.  Argument for a direct realization of the quantum metrological triangle , 2000 .

[42]  Naoki Kuramoto,et al.  Evaluation of the molar volume of silicon crystals for a determination of the Avogadro constant , 2002, Conference Digest Conference on Precision Electromagnetic Measurements.

[43]  M. Gläser,et al.  Tracing the atomic mass unit to the kilogram by ion accumulation , 2003 .

[44]  Dark matter, dark energy, gravitational lensing and the formation of structure in the universe , 2003 .

[45]  B. Taylor,et al.  CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.

[46]  Peter J. Mohr,et al.  Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation 1 (CI-2005) , 2006 .

[47]  Van Dyck,et al.  Determination of the electron's atomic mass and the proton/electron mass ratio via Penning trap mass spectroscopy. , 1995, Physical review letters.

[48]  Martin J T Milton,et al.  Primary methods for the measurement of amount of substance , 2001 .

[49]  Richard Davis,et al.  LETTER TO THE EDITOR: The Stability of the SI Unit of Mass as Determined from Electrical Measurements , 1989 .

[50]  G. Sloggett,et al.  A Determination of the Volt , 1989 .

[51]  The chemical preparation and characterization of specimens for , 1995 .

[52]  R. Davis,et al.  Possible new definitions of the kilogram , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[53]  A. L. Eichenberger,et al.  Tracing Planck's constant to the kilogram by electromechanical methods , 2003 .