Efficient and reliable hierarchical error estimates for the discretization error of elliptic obstacle problems

We present and analyze novel hierarchical a posteriori error estimates for self-adjoint elliptic obstacle problems. Our approach differs from straightforward, but nonreliable estimators by an additional extra term accounting for the deviation of the discrete free boundary in the localization step. We prove efficiency and reliability on a saturation assumption and a regularity condition on the underlying grid. Heuristic arguments suggest that the extra term is of higher order and preserves full locality. Numerical computations confirm our theoretical findings.

[1]  Andreas Veeser,et al.  Hierarchical error estimates for the energy functional in obstacle problems , 2011, Numerische Mathematik.

[2]  Sergey Korotov,et al.  Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle , 2001, Math. Comput..

[3]  Oliver Sander,et al.  Multidimensional coupling in a human knee model , 2008 .

[4]  Peter Deuflhard,et al.  Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..

[5]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[6]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic variational inequalities , 1996 .

[7]  R. Hoppe,et al.  Adaptive multilevel methods for obstacle problems , 1994 .

[8]  Ricardo H. Nochetto,et al.  Pointwise a posteriori error control for elliptic obstacle problems , 2003, Numerische Mathematik.

[9]  Carsten Carstensen,et al.  Averaging techniques yield reliable a posteriori finite element error control for obstacle problems , 2004, Numerische Mathematik.

[10]  Kunibert G. Siebert,et al.  A Unilaterally Constrained Quadratic Minimization with Adaptive Finite Elements , 2007, SIAM J. Optim..

[11]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[12]  Wenbin Liu,et al.  A Posteriori Error Estimators for a Class of Variational Inequalities , 2000, J. Sci. Comput..

[13]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[14]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1978 .

[15]  Andreas Veeser,et al.  Efficient and Reliable A Posteriori Error Estimators for Elliptic Obstacle Problems , 2001, SIAM J. Numer. Anal..

[16]  Ricardo H. Nochetto,et al.  Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.

[17]  Sergey Korotov,et al.  Global and local refinement techniques yielding nonobtuse tetrahedral partitions , 2005 .

[18]  H. Yserentant On the multi-level splitting of finite element spaces , 1986 .

[19]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic problems in two and three space dimensions , 1996 .

[20]  Ralf Kornhuber,et al.  On Hierarchical Error Estimators for Time-Discretized Phase Field Models , 2010 .

[21]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[22]  D. Braess,et al.  A posteriori estimators for obstacle problems by the hypercircle method , 2008 .

[23]  Ricardo H. Nochetto,et al.  Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.

[24]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[25]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1977 .

[26]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[27]  O. Zienkiewicz,et al.  The hierarchical concept in finite element analysis , 1983 .

[28]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[29]  Frank W. Letniowski,et al.  Three-Dimensional Delaunay Triangulations for Finite Element Approximations to a Second-Order Diffusion Operator , 1992, SIAM J. Sci. Comput..

[30]  Ricardo H. Nochetto,et al.  Fully Localized A posteriori Error Estimators and Barrier Sets for Contact Problems , 2004, SIAM J. Numer. Anal..

[31]  Harry Yserentant,et al.  Two preconditioners based on the multi-level splitting of finite element spaces , 1990 .

[32]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[33]  R. Kornhuber Adaptive monotone multigrid methods for nonlinear variational problems , 1997 .

[34]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .