Efficient and reliable hierarchical error estimates for the discretization error of elliptic obstacle problems
暂无分享,去创建一个
[1] Andreas Veeser,et al. Hierarchical error estimates for the energy functional in obstacle problems , 2011, Numerische Mathematik.
[2] Sergey Korotov,et al. Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle , 2001, Math. Comput..
[3] Oliver Sander,et al. Multidimensional coupling in a human knee model , 2008 .
[4] Peter Deuflhard,et al. Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..
[5] R. Bank,et al. Some a posteriori error estimators for elliptic partial differential equations , 1985 .
[6] Ralf Kornhuber,et al. A posteriori error estimates for elliptic variational inequalities , 1996 .
[7] R. Hoppe,et al. Adaptive multilevel methods for obstacle problems , 1994 .
[8] Ricardo H. Nochetto,et al. Pointwise a posteriori error control for elliptic obstacle problems , 2003, Numerische Mathematik.
[9] Carsten Carstensen,et al. Averaging techniques yield reliable a posteriori finite element error control for obstacle problems , 2004, Numerische Mathematik.
[10] Kunibert G. Siebert,et al. A Unilaterally Constrained Quadratic Minimization with Adaptive Finite Elements , 2007, SIAM J. Optim..
[11] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[12] Wenbin Liu,et al. A Posteriori Error Estimators for a Class of Variational Inequalities , 2000, J. Sci. Comput..
[13] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[14] William W. Hager,et al. Error estimates for the finite element solution of variational inequalities , 1978 .
[15] Andreas Veeser,et al. Efficient and Reliable A Posteriori Error Estimators for Elliptic Obstacle Problems , 2001, SIAM J. Numer. Anal..
[16] Ricardo H. Nochetto,et al. Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.
[17] Sergey Korotov,et al. Global and local refinement techniques yielding nonobtuse tetrahedral partitions , 2005 .
[18] H. Yserentant. On the multi-level splitting of finite element spaces , 1986 .
[19] Ralf Kornhuber,et al. A posteriori error estimates for elliptic problems in two and three space dimensions , 1996 .
[20] Ralf Kornhuber,et al. On Hierarchical Error Estimators for Time-Discretized Phase Field Models , 2010 .
[21] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .
[22] D. Braess,et al. A posteriori estimators for obstacle problems by the hypercircle method , 2008 .
[23] Ricardo H. Nochetto,et al. Small data oscillation implies the saturation assumption , 2002, Numerische Mathematik.
[24] Ludmil T. Zikatanov,et al. A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..
[25] William W. Hager,et al. Error estimates for the finite element solution of variational inequalities , 1977 .
[26] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[27] O. Zienkiewicz,et al. The hierarchical concept in finite element analysis , 1983 .
[28] D. Kinderlehrer,et al. An introduction to variational inequalities and their applications , 1980 .
[29] Frank W. Letniowski,et al. Three-Dimensional Delaunay Triangulations for Finite Element Approximations to a Second-Order Diffusion Operator , 1992, SIAM J. Sci. Comput..
[30] Ricardo H. Nochetto,et al. Fully Localized A posteriori Error Estimators and Barrier Sets for Contact Problems , 2004, SIAM J. Numer. Anal..
[31] Harry Yserentant,et al. Two preconditioners based on the multi-level splitting of finite element spaces , 1990 .
[32] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[33] R. Kornhuber. Adaptive monotone multigrid methods for nonlinear variational problems , 1997 .
[34] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .