Translocator Protein Ligand PIGA1138 Reduces Disease Symptoms and Severity in Experimental Autoimmune Encephalomyelitis Model of Primary Progressive Multiple Sclerosis

[1]  M. Schumacher,et al.  Progesterone and Allopregnanolone Neuroprotective Effects in the Wobbler Mouse Model of Amyotrophic Lateral Sclerosis , 2021, Cellular and Molecular Neurobiology.

[2]  S. Brun,et al.  Microglial Cell Morphology and Phagocytic Activity Are Critically Regulated by the Neurosteroid Allopregnanolone: A Possible Role in Neuroprotection , 2021, Cells.

[3]  F. Da Settimo,et al.  De novo Neurosteroidogenesis in Human Microglia: Involvement of the 18 kDa Translocator Protein , 2021, International journal of molecular sciences.

[4]  M. Schumacher,et al.  Developmental expression of genes involved in progesterone synthesis, metabolism and action during the post-natal cerebellar myelination , 2021, The Journal of Steroid Biochemistry and Molecular Biology.

[5]  R. Arnon,et al.  Titration of myelin oligodendrocyte glycoprotein (MOG) - Induced experimental autoimmune encephalomyelitis (EAE) model , 2020, Journal of Neuroscience Methods.

[6]  D. Servent,et al.  Alterations of peripheral nerve excitability in an experimental autoimmune encephalomyelitis mouse model for multiple sclerosis , 2020, Journal of Neuroinflammation.

[7]  Y. Luo,et al.  Regulatory B Cells and Its Role in Central Nervous System Inflammatory Demyelinating Diseases , 2020, Frontiers in Immunology.

[8]  C. Martini,et al.  18-kDa TranSlocator protein association complexes in the brain: from structure to function. , 2020, Biochemical pharmacology.

[9]  R. Banati,et al.  The Translocator Protein (TSPO) in Mitochondrial Bioenergetics and Immune Processes , 2020, Cells.

[10]  Z. Berente,et al.  Investigation of Cuprizone-Induced Demyelination in mGFAP-Driven Conditional Transient Receptor Potential Ankyrin 1 (TRPA1) Receptor Knockout Mice , 2019, Cells.

[11]  D. Mahns,et al.  Suppression of the Peripheral Immune System Limits the Central Immune Response Following Cuprizone-Feeding: Relevance to Modelling Multiple Sclerosis , 2019, Cells.

[12]  F. Da Settimo,et al.  Microglial Pro-Inflammatory and Anti-Inflammatory Phenotypes Are Modulated by Translocator Protein Activation , 2019, International journal of molecular sciences.

[13]  R. Gold,et al.  Progressive multiple sclerosis: from pathophysiology to therapeutic strategies , 2019, Nature Reviews Drug Discovery.

[14]  R. Rupprecht,et al.  CRISPR-Cas9 Mediated TSPO Gene Knockout alters Respiration and Cellular Metabolism in Human Primary Microglia Cells , 2019, International journal of molecular sciences.

[15]  F. Bihel,et al.  TSPO Ligands Boost Mitochondrial Function and Pregnenolone Synthesis , 2019, Journal of Alzheimer's disease : JAD.

[16]  Qi Liu,et al.  Quantitative-Profiling Method of Serum Steroid Hormones by Hydroxylamine-Derivatization HPLC–MS , 2019, Natural Products and Bioprospecting.

[17]  Peter A. Smith,et al.  Sensory Neurons of the Dorsal Root Ganglia Become Hyperexcitable in a T-Cell-Mediated MOG-EAE Model of Multiple Sclerosis , 2019, eNeuro.

[18]  J. Correale,et al.  Mechanisms of Neurodegeneration and Axonal Dysfunction in Progressive Multiple Sclerosis , 2019, Biomedicines.

[19]  M. Filippi,et al.  Targeting progression in multiple sclerosis — an update , 2019, Nature Reviews Neurology.

[20]  M. Filippi,et al.  Multiple sclerosis , 2018, Nature Reviews Disease Primers.

[21]  Phil Lee,et al.  In vivo evidence of oxidative stress in brains of patients with progressive multiple sclerosis , 2018, Multiple sclerosis.

[22]  Sangeetha Sukumari-Ramesh,et al.  TSPO: An Evolutionarily Conserved Protein with Elusive Functions , 2018, International journal of molecular sciences.

[23]  E. Simpson,et al.  Neuregulin1 modulation of experimental autoimmune encephalomyelitis (EAE) , 2018, Journal of Neuroimmunology.

[24]  Kazunori Kataoka,et al.  Combined CatWalk Index: an improved method to measure mouse motor function using the automated gait analysis system , 2018, BMC Research Notes.

[25]  S. Meuth,et al.  Cytokine signaling in multiple sclerosis: Lost in translation , 2018, Multiple sclerosis.

[26]  V. Papadopoulos,et al.  Translocator protein (18 kDa): an update on its function in steroidogenesis , 2018, Journal of neuroendocrinology.

[27]  F. Bihel,et al.  The translocator protein ligand XBD173 improves clinical symptoms and neuropathological markers in the SJL/J mouse model of multiple sclerosis. , 2017, Biochimica et biophysica acta. Molecular basis of disease.

[28]  Kevin W. Eliceiri,et al.  ImageJ for the Next Generation of Scientific Image Data , 2019, Microscopy and Microanalysis.

[29]  B. Murray,et al.  Current and Emerging Therapies in Multiple Sclerosis: Implications for the Radiologist, Part 2—Surveillance for Treatment Complications and Disease Progression , 2017, American Journal of Neuroradiology.

[30]  E. Novellino,et al.  Residence Time, a New parameter to Predict Neurosteroidogenic Efficacy of Translocator Protein (TSPO) Ligands: the Case Study of N,N‐Dialkyl‐2‐arylindol‐3‐ylglyoxylamides , 2017, ChemMedChem.

[31]  I. Zagon,et al.  Featured Article: Serum [Met5]-enkephalin levels are reduced in multiple sclerosis and restored by low-dose naltrexone , 2017, Experimental biology and medicine.

[32]  Alastair Wilkins,et al.  Cerebellar Dysfunction in Multiple Sclerosis , 2017, Front. Neurol..

[33]  S. Tiwari-Woodruff,et al.  Consistent induction of chronic experimental autoimmune encephalomyelitis in C57BL/6 mice for the longitudinal study of pathology and repair , 2017, Journal of Neuroscience Methods.

[34]  V. Echeverria,et al.  4′-Chlorodiazepam Protects Mitochondria in T98G Astrocyte Cell Line from Glucose Deprivation , 2017, Neurotoxicity Research.

[35]  S. Amor,et al.  Multiple sclerosis animal models: a clinical and histopathological perspective , 2017, Brain pathology.

[36]  Kevin W. Eliceiri,et al.  ImageJ2: ImageJ for the next generation of scientific image data , 2017, BMC Bioinformatics.

[37]  B. Ravikumar,et al.  Differential efficacy of the TSPO ligands etifoxine and XBD-173 in two rodent models of Multiple Sclerosis , 2016, Neuropharmacology.

[38]  É. Szőke,et al.  TRPA1 deficiency is protective in cuprizone‐induced demyelination—A new target against oligodendrocyte apoptosis , 2016, Glia.

[39]  F. Da Settimo,et al.  TSPO PIGA Ligands Promote Neurosteroidogenesis and Human Astrocyte Well-Being , 2016, International journal of molecular sciences.

[40]  Jeffrey L. Bennett,et al.  Loss of Myelin Basic Protein Function Triggers Myelin Breakdown in Models of Demyelinating Diseases , 2016, Cell reports.

[41]  T. Guilarte,et al.  TSPO Finds NOX2 in Microglia for Redox Homeostasis. , 2016, Trends in pharmacological sciences.

[42]  B. Engelhardt,et al.  Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. , 2016, Biochimica et biophysica acta.

[43]  F. Da Settimo,et al.  TSPO ligand residence time: a new parameter to predict compound neurosteroidogenic efficacy , 2016, Scientific Reports.

[44]  Mohajeet B. Bhuckory,et al.  Targeting translocator protein (18 kDa) (TSPO) dampens pro-inflammatory microglia reactivity in the retina and protects from degeneration , 2015, Journal of Neuroinflammation.

[45]  S. Maier,et al.  The therapeutic potential of interleukin-10 in neuroimmune diseases , 2015, Neuropharmacology.

[46]  Manuel A. Friese,et al.  Immunopathology of multiple sclerosis , 2015, Nature Reviews Immunology.

[47]  E. Novellino,et al.  Deepening the Topology of the Translocator Protein Binding Site by Novel N,N-Dialkyl-2-arylindol-3-ylglyoxylamides. , 2015, Journal of medicinal chemistry.

[48]  Sveinung Fjær,et al.  Magnetization transfer ratio does not correlate to myelin content in the brain in the MOG-EAE mouse model , 2015, Neurochemistry International.

[49]  A. Lo,et al.  Treatment of progressive multiple sclerosis: what works, what does not, and what is needed , 2015, The Lancet Neurology.

[50]  A. Maghazachi,et al.  Multiple sclerosis and the role of immune cells. , 2014, World journal of experimental medicine.

[51]  C. Power,et al.  Allopregnanolone and neuroinflammation: a focus on multiple sclerosis , 2014, Front. Cell. Neurosci..

[52]  G. Panzica,et al.  Allopregnanolone: State of the art , 2014, Progress in Neurobiology.

[53]  Stephen D Miller,et al.  The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. , 2014, Handbook of clinical neurology.

[54]  W. Deng,et al.  A TSPO ligand is protective in a mouse model of multiple sclerosis , 2013, EMBO molecular medicine.

[55]  X. Qi,et al.  Translocator Protein (18 kDa): A Promising Therapeutic Target and Diagnostic Tool for Cardiovascular Diseases , 2012, Oxidative medicine and cellular longevity.

[56]  R. Ransohoff,et al.  Animal models of multiple sclerosis: the good, the bad and the bottom line , 2012, Nature Neuroscience.

[57]  R. Rigolio,et al.  Neuroprotective Effects of Progesterone in Chronic Experimental Autoimmune Encephalomyelitis , 2012, Journal of neuroendocrinology.

[58]  V. Papadopoulos,et al.  Structural and functional evolution of the translocator protein (18 kDa). , 2012, Current molecular medicine.

[59]  M. Kassiou,et al.  Is there any correlation between binding and functional effects at the translocator protein (TSPO) (18 kDa)? , 2012, Current molecular medicine.

[60]  Minfei Wu,et al.  Neurofilament proteins in axonal regeneration and neurodegenerative diseases , 2012, Neural regeneration research.

[61]  V. Papadopoulos,et al.  Axonal Regeneration and Neuroinflammation: Roles for the Translocator Protein 18 kDa , 2012, Journal of neuroendocrinology.

[62]  C. Constantinescu,et al.  Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS) , 2011, British journal of pharmacology.

[63]  Xiaoyu Xia,et al.  An Animal Model of Cortical and Callosal Pathology in Multiple Sclerosis , 2011, Brain pathology.

[64]  S. Taliani,et al.  Anxiolytic properties of a 2-phenylindolglyoxylamide TSPO ligand: Stimulation of in vitro neurosteroid production affecting GABAA receptor activity , 2011, Psychoneuroendocrinology.

[65]  Gerhard Rammes,et al.  Translocator protein (18 kDa) (TSPO) as a therapeutic target for neurological and psychiatric disorders , 2010, Nature Reviews Drug Discovery.

[66]  Bingbing Song,et al.  Oestrogen receptor b ligand : a novel treatment to enhance endogenous functional remyelination , 2010 .

[67]  H. Lassmann Axonal and neuronal pathology in multiple sclerosis: What have we learnt from animal models , 2010, Experimental Neurology.

[68]  E. Kahana,et al.  Multiple sclerosis: geoepidemiology, genetics and the environment. , 2010, Autoimmunity reviews.

[69]  C. Polman,et al.  Greater loss of axons in primary progressive multiple sclerosis plaques compared to secondary progressive disease. , 2009, Brain : a journal of neurology.

[70]  E. Novellino,et al.  Anxiolytic-like effects of N,N-dialkyl-2-phenylindol-3-ylglyoxylamides by modulation of translocator protein promoting neurosteroid biosynthesis. , 2008, Journal of medicinal chemistry.

[71]  J. Buer,et al.  The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins , 2008, Nature.

[72]  R. Melcangi,et al.  Neurosteroids: Measurement and pathophysiologic relevance , 2008, Neurochemistry International.

[73]  H. Lassmann,et al.  Experimental models of multiple sclerosis. , 2007, Revue neurologique.

[74]  J. Goverman,et al.  Active induction of experimental allergic encephalomyelitis , 2006, Nature Protocols.

[75]  D. Littman,et al.  The Orphan Nuclear Receptor RORγt Directs the Differentiation Program of Proinflammatory IL-17+ T Helper Cells , 2006, Cell.

[76]  F.P.T. Hamers,et al.  CatWalk-assisted gait analysis in the assessment of spinal cord injury. , 2006, Journal of neurotrauma.

[77]  D. Littman,et al.  The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. , 2006, Cell.

[78]  J. Povlishock,et al.  Quantitative analysis of the relationship between intra- axonal neurofilament compaction and impaired axonal transport following diffuse traumatic brain injury. , 2005, Journal of neurotrauma.

[79]  Roland Martin,et al.  Immunology of multiple sclerosis. , 2005, Annual review of immunology.

[80]  C. Polman,et al.  Axonal damage accumulates in the progressive phase of multiple sclerosis: three year follow up study , 2005, Journal of Neurology, Neurosurgery & Psychiatry.

[81]  A. Sierra,et al.  Neurosteroids: The StAR Protein in the Brain , 2004, Journal of neuroendocrinology.

[82]  C. Whitacre,et al.  Sex differences in experimental autoimmune encephalomyelitis in multiple murine strains , 2004, Journal of Neuroimmunology.

[83]  Daniel Offen,et al.  The role of oxidative stress in the pathogenesis of multiple sclerosis: The need for effective antioxidant therapy , 2004, Journal of Neurology.

[84]  M. Schumacher,et al.  Progesterone and its metabolites increase myelin basic protein expression in organotypic slice cultures of rat cerebellum , 2003, Journal of neurochemistry.

[85]  David H. Miller,et al.  A controlled trial of natalizumab for relapsing multiple sclerosis. , 2003, The New England journal of medicine.

[86]  S. Miller,et al.  Theiler's Virus‐Mediated Autoimmunity , 2002, Annals of the New York Academy of Sciences.

[87]  H. Hartung,et al.  New concepts in the immunopathogenesis of multiple sclerosis , 2002, Nature Reviews Neuroscience.

[88]  M. Sela,et al.  Immunomodulation of experimental autoimmune encephalomyelitis by oral administration of copolymer 1. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[89]  H. Vaudry,et al.  Neurosteroids: expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system. , 1999, Pharmacological reviews.

[90]  H. Weiner,et al.  IL-10 is critical in the regulation of automimmune encephalomyelitis as demonstrated by studies of IL-10 and IL-4 deficient and transgenic mice , 1998, Journal of Neuroimmunology.

[91]  A. Ben-nun,et al.  A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H‐2b mice: Fine specificity and T cell receptor Vβ expression of encephalitogenic T cells , 1995, European journal of immunology.

[92]  A. Guidotti,et al.  The pharmacology of neurosteroidogenesis , 1994, The Journal of Steroid Biochemistry and Molecular Biology.

[93]  D. McFarlin,et al.  Immunological aspects of demyelinating diseases. , 1992, Annual review of immunology.

[94]  E. Cruz,et al.  Lost in the translation. , 1988, Chest.

[95]  J W Griffin,et al.  Neurofilament gene expression: a major determinant of axonal caliber. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[96]  S. Mörk,et al.  IN‐SITU CHARACTERIZATION OF MONONUCLEAR CELL INFILTRATES IN LESIONS OF MULTIPLE SCLEROSIS , 1982, Neuropathology and applied neurobiology.