Ubiquitous Social Media Analysis

Structuring is one of the fundamental activities needed to understand data. Human structuring activity lies behind many of the datasets found on the internet that contain grouped instances, such as file or email folders, tags and bookmarks, ontologies and linked data. Understanding the dynamics of large-scale structuring activities is a key prerequisite for theories of individual behaviour in collaborative settings as well as for applications such as recommender systems. One central question is to what extent the “structurer” – be it human or machine – is driven by his/its own prior structures, and to what extent by the structures created by others such as one’s communities. In this paper, we propose a method for identifying these dynamics. The method relies on dynamic conceptual clustering, and it simulates an intellectual structuring process operating over an extended period of time. The development of a grouping of dynamically changing items follows a dynamically changing and collectively determined “guiding grouping”. The analysis of a real-life dataset of a platform for literature management suggests that even in such a typical “Web 2.0” environment, users are guided somewhat more by their own previous behaviour than by their peers. Furthermore, we also illustrate how the presented method can be used to recommend structure to the user.

[1]  Mor Naaman,et al.  On the Study of Diurnal Urban Routines on Twitter , 2012, ICWSM.

[2]  S. Aronoff Geographic Information Systems: A Management Perspective , 1989 .

[3]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[4]  Paul Lukowicz,et al.  A planetary nervous system for social mining and collective awareness , 2012, ArXiv.

[5]  Chun How Tan,et al.  Beyond "local", "categories" and "friends": clustering foursquare users with latent "topics" , 2012, UbiComp.

[6]  A. H. Lipkus A proof of the triangle inequality for the Tanimoto distance , 1999 .

[7]  Stephen Farrell,et al.  Harvesting with SONAR: the value of aggregating social network information , 2008, CHI.

[8]  Alan F. Smeaton,et al.  Combining Social Network Analysis and Sentiment Analysis to Explore the Potential for Online Radicalisation , 2009, 2009 International Conference on Advances in Social Network Analysis and Mining.

[9]  Cédric du Mouza,et al.  Mobility Patterns , 2005, STDBM.

[10]  Gregory D. Abowd,et al.  CyberDesk: a framework for providing self-integrating context-aware services , 1998, IUI '98.

[11]  Sofus A. Macskassy On the Study of Social Interactions in Twitter , 2012, ICWSM.

[12]  Guangzhong Sun,et al.  Users sleeping time analysis based on micro-blogging data , 2012, UbiComp '12.

[13]  Christos Boutsidis,et al.  SVD based initialization: A head start for nonnegative matrix factorization , 2008, Pattern Recognit..

[14]  Dennis Zuev,et al.  The movement against illegal immigration: analysis of the central node in the Russian extreme-right movement , 2010 .

[15]  Emiliano Miluzzo,et al.  A survey of mobile phone sensing , 2010, IEEE Communications Magazine.

[16]  Susan T. Dumais,et al.  Characterizing Microblogs with Topic Models , 2010, ICWSM.

[17]  Jussara M. Almeida,et al.  A Picture of Instagram is Worth More Than a Thousand Words: Workload Characterization and Application , 2013, 2013 IEEE International Conference on Distributed Computing in Sensor Systems.

[18]  John Riedl,et al.  tagging, communities, vocabulary, evolution , 2006, CSCW '06.

[19]  Vincent T. Y. Ng,et al.  Lifespan and popularity measurement of online content on social networks , 2011, Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics.

[20]  Biswanath Mukherjee,et al.  Wireless sensor network survey , 2008, Comput. Networks.

[21]  Bettina Berendt,et al.  Intelligent scientific authoring tools: Interactive data mining for constructive uses of citation networks , 2010, Inf. Process. Manag..

[22]  J. Tukey,et al.  Variations of Box Plots , 1978 .

[23]  Alec Wolman,et al.  I am a sensor, and I approve this message , 2010, HotMobile '10.

[24]  Ben Y. Zhao,et al.  User interactions in social networks and their implications , 2009, EuroSys '09.

[25]  Carlo Alberto Bentivoglio Recognizing Community Interaction States in Discussion Forum Evolution , 2009, AAAI Fall Symposium: Cognitive and Metacognitive Educational Systems.

[26]  Jason Pascoe,et al.  Adding generic contextual capabilities to wearable computers , 1998, Digest of Papers. Second International Symposium on Wearable Computers (Cat. No.98EX215).

[27]  Lada A. Adamic,et al.  Social influence and the diffusion of user-created content , 2009, EC '09.

[28]  Santo Fortunato,et al.  Finding Statistically Significant Communities in Networks , 2010, PloS one.

[29]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[30]  Jure Leskovec,et al.  Social media: source of information or bunch of noise , 2011, WWW.

[31]  Ben Shneiderman,et al.  Visualizing Threaded Conversation Networks: Mining Message Boards and Email Lists for Actionable Insights , 2010, AMT.

[32]  Virgílio A. F. Almeida,et al.  Beware of What You Share: Inferring Home Location in Social Networks , 2012, 2012 IEEE 12th International Conference on Data Mining Workshops.

[33]  Barry Wellman,et al.  Geography of Twitter networks , 2012, Soc. Networks.

[34]  Shou-De Lin,et al.  Exploiting large-scale check-in data to recommend time-sensitive routes , 2012, UrbComp '12.

[35]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[36]  Stephen E. Fienberg,et al.  User Interest and Interaction Structure in Online Forums , 2010, ICWSM.

[37]  Jon Kleinberg,et al.  Authoritative sources in a hyperlinked environment , 1999, SODA '98.

[38]  Aniket Kittur,et al.  Bridging the gap between physical location and online social networks , 2010, UbiComp.

[39]  Cecilia Mascolo,et al.  Socio-Spatial Properties of Online Location-Based Social Networks , 2011, ICWSM.

[40]  Lada A. Adamic,et al.  Friends and neighbors on the Web , 2003, Soc. Networks.

[41]  Nazareno Andrade,et al.  Individual and social behavior in tagging systems , 2009, HT '09.

[42]  Jaime Redondo,et al.  The Spanish adaptation of ANEW (Affective Norms for English Words) , 2007, Behavior research methods.

[43]  Jamie Bartlett,et al.  The New Face of Digital Populism , 2011 .

[44]  Johan Bollen,et al.  Twitter mood predicts the stock market , 2010, J. Comput. Sci..

[45]  Bettina Berendt,et al.  Interactive Grouping of Friends in OSN: Towards Online Context Management , 2012, 2012 IEEE 12th International Conference on Data Mining Workshops.

[46]  Tat-Seng Chua,et al.  Mining Travel Patterns from Geotagged Photos , 2012, TIST.

[47]  Kathleen M. Blee,et al.  Conservative and Right-Wing Movements , 2010 .

[48]  Ben Y. Zhao,et al.  Measurement-calibrated graph models for social network experiments , 2010, WWW '10.

[49]  Jiebo Luo,et al.  LikeMiner: a system for mining the power of 'like' in social media networks , 2011, KDD.

[50]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[51]  Derek Greene,et al.  Identifying Topical Twitter Communities via User List Aggregation , 2012, ArXiv.

[52]  T. Geisel,et al.  The scaling laws of human travel , 2006, Nature.

[53]  Krishna P. Gummadi,et al.  Geographic Dissection of the Twitter Network , 2012, ICWSM.

[54]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[55]  David Liben-Nowell,et al.  The link-prediction problem for social networks , 2007 .

[56]  James B. D. Joshi,et al.  Exploring trajectory-driven local geographic topics in foursquare , 2012, UbiComp.

[57]  Qi He,et al.  TwitterRank: finding topic-sensitive influential twitterers , 2010, WSDM '10.

[58]  Luca Tateo,et al.  The Italian Extreme Right On-line Network: An Exploratory Study Using an Integrated Social Network Analysis and Content Analysis Approach , 2006, J. Comput. Mediat. Commun..

[59]  Xing Xie,et al.  Detecting geographic locations from web resources , 2005, GIR '05.

[60]  M. Weiser,et al.  Hot topics-ubiquitous computing , 1993 .

[61]  Norman M. Sadeh,et al.  The Livehoods Project: Utilizing Social Media to Understand the Dynamics of a City , 2012, ICWSM.

[62]  Matthew J. Goodwin,et al.  The Roots of Extremism: The English Defence League and the Counter-Jihad Challenge , 2013 .

[63]  Amanda Lenhart,et al.  Adults and social network websites , 2009 .

[64]  Lorrie Faith Cranor,et al.  Empirical models of privacy in location sharing , 2010, UbiComp.

[65]  Jure Leskovec,et al.  Friendship and mobility: user movement in location-based social networks , 2011, KDD.

[66]  Jamie Bartlett,et al.  Inside the EDL: Populist politi , 2011 .

[67]  Jussara M. Almeida,et al.  Visualizing the Invisible Image of Cities , 2012, 2012 IEEE International Conference on Green Computing and Communications.

[68]  John Krumm,et al.  Exploring end user preferences for location obfuscation, location-based services, and the value of location , 2010, UbiComp.

[69]  Susan C. Herring,et al.  Computer-mediated communication on the internet , 2005, Annu. Rev. Inf. Sci. Technol..

[70]  Bettina Berendt,et al.  Circles, posts and privacy in egocentric social networks: An exploratory visualization approach , 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013).

[71]  Nick Koudas,et al.  Efficient identification of starters and followers in social media , 2009, EDBT '09.

[72]  Bill N. Schilit,et al.  Context-aware computing applications , 1994, Workshop on Mobile Computing Systems and Applications.

[73]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[74]  Mark Weiser The computer for the 21st century , 1991 .

[75]  Padhraic Smyth,et al.  Modeling General and Specific Aspects of Documents with a Probabilistic Topic Model , 2006, NIPS.

[76]  Barbara Poblete,et al.  Do all birds tweet the same?: characterizing twitter around the world , 2011, CIKM '11.

[77]  Licia Capra,et al.  Quality control for real-time ubiquitous crowdsourcing , 2011, UbiCrowd '11.

[78]  Matthias Dehmer,et al.  Information processing in complex networks: Graph entropy and information functionals , 2008, Appl. Math. Comput..

[79]  Kyumin Lee,et al.  Exploring Millions of Footprints in Location Sharing Services , 2011, ICWSM.

[80]  M. Bradley,et al.  Affective Norms for English Words (ANEW): Instruction Manual and Affective Ratings , 1999 .

[81]  Stephen P. Borgatti,et al.  Identifying sets of key players in a social network , 2006, Comput. Math. Organ. Theory.

[82]  Jussara M. Almeida,et al.  Uncovering properties in participatory sensor networks , 2012, HotPlanet '12.

[83]  Walter Isaacson Steve Jobs , 2011 .

[84]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[85]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[86]  Mark Weiser,et al.  Some computer science issues in ubiquitous computing , 1993, CACM.

[87]  R. Michalski,et al.  Learning from Observation: Conceptual Clustering , 1983 .

[88]  Mahadev Satyanarayanan,et al.  Fundamental challenges in mobile computing , 1996, PODC '96.

[89]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.

[90]  Deborah Estrin,et al.  Employing user feedback for semantic location services , 2011, UbiComp '11.

[91]  L. Hubert,et al.  Comparing partitions , 1985 .

[92]  Duncan J. Watts,et al.  Everyone's an influencer: quantifying influence on twitter , 2011, WSDM '11.

[93]  Ponnurangam Kumaraguru,et al.  Mining YouTube to Discover Extremist Videos, Users and Hidden Communities , 2010, AIRS.

[94]  Bernardo A. Huberman,et al.  Usage patterns of collaborative tagging systems , 2006, J. Inf. Sci..

[95]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[96]  Jennifer Jie Xu,et al.  Mining communities and their relationships in blogs: A study of online hate groups , 2007, Int. J. Hum. Comput. Stud..

[97]  Paul Dourish,et al.  Yesterday’s tomorrows: notes on ubiquitous computing’s dominant vision , 2007, Personal and Ubiquitous Computing.

[98]  Yutaka Matsuo,et al.  Earthquake shakes Twitter users: real-time event detection by social sensors , 2010, WWW '10.

[99]  Vikas Sindhwani,et al.  Learning evolving and emerging topics in social media: a dynamic nmf approach with temporal regularization , 2012, WSDM '12.

[100]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[101]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[102]  Timothy W. Finin,et al.  Detecting Commmunities via Simultaneous Clustering of Graphs and Folksonomies , 2008, WebKDD 2008.

[103]  Thomas L. Griffiths,et al.  Probabilistic Topic Models , 2007 .

[104]  V. Burris,et al.  White Supremacist Networks on the Internet , 2000 .

[105]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[106]  John Hannon,et al.  Recommending twitter users to follow using content and collaborative filtering approaches , 2010, RecSys '10.

[107]  Santo Fortunato,et al.  Consensus clustering in complex networks , 2012, Scientific Reports.

[108]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[109]  Daniele Quercia,et al.  The Social World of Twitter: Topics, Geography, and Emotions , 2012, ICWSM.

[110]  Anind K. Dey,et al.  Proceedings of the 2012 ACM Conference on Ubiquitous Computing , 2012, UBICOMP 2012.

[111]  Henry A. Kautz,et al.  Finding your friends and following them to where you are , 2012, WSDM '12.

[112]  Alexander J. Smola,et al.  Like like alike: joint friendship and interest propagation in social networks , 2011, WWW.

[113]  Charu C. Aggarwal,et al.  Managing and Mining Graph Data , 2010, Managing and Mining Graph Data.

[114]  Huan Liu,et al.  Graph Mining Applications to Social Network Analysis , 2010, Managing and Mining Graph Data.

[115]  Huan Liu,et al.  gSCorr: modeling geo-social correlations for new check-ins on location-based social networks , 2012, CIKM.

[116]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[117]  Matthew J. Goodwin,et al.  The New Radical Right: Violent and Non-Violent Movements in Europe , 2012 .

[118]  Diane J. Cook,et al.  Graph-based anomaly detection , 2003, KDD '03.

[119]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[120]  Gregory D. Abowd,et al.  Towards a Better Understanding of Context and Context-Awareness , 1999, HUC.

[121]  Gregory D. Abowd,et al.  The Human Experience , 2002, IEEE Pervasive Comput..

[122]  Claudius Wagemann,et al.  ONLINE NETWORKS OF THE ITALIAN AND GERMAN EXTREME RIGHT , 2009 .

[123]  Hayder Radha,et al.  A KLT-inspired node centrality for identifying influential neighborhoods in graphs , 2010, 2010 44th Annual Conference on Information Sciences and Systems (CISS).

[124]  John Seely Brown,et al.  The Origins of Ubiquitous Computing Research at PARC in the Late 1980s , 1999, IBM Syst. J..

[125]  Steven B. Andrews,et al.  Structural Holes: The Social Structure of Competition , 1995, The SAGE Encyclopedia of Research Design.

[126]  John Scott Social Network Analysis , 1988 .

[127]  Kazutoshi Sumiya,et al.  Measuring geographical regularities of crowd behaviors for Twitter-based geo-social event detection , 2010, LBSN '10.

[128]  Zeynep Tufekci,et al.  Big Data: Pitfalls, Methods and Concepts for an Emergent Field , 2013 .

[129]  Vincent T. Y. Ng,et al.  Identifying influential users by their postings in social networks , 2012, MSM '12.

[130]  Xing Xie,et al.  Mining city landmarks from blogs by graph modeling , 2009, ACM Multimedia.