Launching and Control of Graphene Plasmons by Nanoridge Structures

The unique properties of graphene plasmons show great potential for plasmonic nanodevice applications such as sensors and modulators. Graphene plasmon launching, propagation control, and ultimately launching with directional control are therefore crucial for the development of such devices. However, previous studies have used foreign objects or external influencing factors to attain directional plasmon launching on graphene, which introduce defects and add complexity to the system. This study introduces a theoretical framework for a graphene-only approach to direction-controlled plasmon launching. We use graphene nanoridges, a defect-free natural structure of graphene, as a plasmon launcher. Through proper arrangement of the nanoridges, unidirectional, bidirectional, and wavelength-sorted plasmon launching with normal illumination can be achieved.