Formal Concept Analysis

Formal concept analysis (FCA) [71] is a mathematical theory for concepts and concept hierarchies that reflects an understanding of “concept” which is first mentioned explicitly in the Logic of Port Royal [2] in 1668 and has been established in the German standard ‘DIN 2330 – Concepts and terms; general principles’ [19]. FCA explicitly formalises extension and intension of a concept, their mutual relationships, and the fact that increasing intent implies decreasing extent and vice versa. Based on lattice theory, it allows to derive a concept hierarchy from a given dataset. FCA complements thus the usual ontology engineering approach, where the concept hierarchy is modeled manually. FCA differs from other knowledge representation formalisms (like RDF (see chapter “Resource Description Framework”), description logics (see chapter “Description Logics”), OWL (see chapter “Web Ontology Language: OWL”), or conceptual graphs [53]). The standard DIN 2330 [19] helps us pointing out the difference. It distinguishes three levels: object level, concept level, and representation level (see Fig. 1). There is no immediate relationship between objects and names. This relationship is rather provided by concepts. On the concept level, the objects under discussion constitute the extension of the concept, while their shared properties constitute the intension of the

[1]  Claudio Carpineto,et al.  GALOIS: An Order-Theoretic Approach to Conceptual Clustering , 1993, ICML.

[2]  Rudolf Wille Restructuring mathematical logic: an approach based on Peirce's pragmatism , 1996 .

[3]  Rudolf Wille,et al.  Conceptual Structures of Multicontexts , 1996, ICCS.

[4]  John F. Sowa,et al.  Conceptual Structures: Information Processing in Mind and Machine , 1983 .

[5]  Rudolf Wille,et al.  Conceptual Clustering via Convex-Ordinal Structures , 1993 .

[6]  Gerd Stumme,et al.  Creation and Merging of Ontology Top-Levels , 2003, ICCS.

[7]  Peter Becker,et al.  A Survey of Formal Concept Analysis Support for Software Engineering Activities , 2005, Formal Concept Analysis.

[8]  Vincent Duquenne,et al.  Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .

[9]  Gerd Stumme Exploration tools in formal concept analysis , 1996 .

[10]  Gerd Stumme,et al.  Concept Exploration - A Tool for Creating and Exploring Conceptual Hierarchies , 1997, ICCS.

[11]  Mohammed J. Zaki,et al.  CHARM: An Efficient Algorithm for Closed Association Rule Mining , 2007 .

[12]  Laurent Chaudron,et al.  Generalized Formal Concept Analysis , 2000, ICCS.

[13]  Steffen Staab Emergent Semantics , 2002, IEEE Intell. Syst..

[14]  Klaus Biedermann,et al.  How Triadic Diagrams Represent Conceptual Structures , 1997, ICCS.

[15]  Gerd Stumme,et al.  Semantic resource management for the web: an e-learning application , 2004, WWW Alt. '04.

[16]  Gerd Stumme,et al.  The Concept Classification of a Terminology Extended by Conjunction and Disjunction , 1996, PRICAI.

[17]  Rudolf Wille,et al.  Conceptual Graphs and Formal Concept Analysis , 1997, ICCS.

[18]  Yves Bastide,et al.  Intelligent Structuring and Reducing of Association Rules with Formal Concept Analysis , 2001, KI/ÖGAI.

[19]  Gerd Stumme,et al.  Computing iceberg concept lattices with T , 2002, Data Knowl. Eng..

[20]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[21]  Rudolf Wille,et al.  A Triadic Approach to Formal Concept Analysis , 1995, ICCS.

[22]  Olivier Ridoux,et al.  A File System Based on Concept Analysis , 2000, Computational Logic.

[23]  Bernhard Ganter,et al.  Formale Begriffsanalyse - mathematische Grundlagen , 1996 .

[24]  Gregor Snelting Concept Lattices in Software Analysis , 2005, Formal Concept Analysis.

[25]  Andreas Hotho,et al.  TRIAS--An Algorithm for Mining Iceberg Tri-Lattices , 2006, Sixth International Conference on Data Mining (ICDM'06).

[26]  Andreas Hotho,et al.  Mining Association Rules in Folksonomies , 2006, Data Science and Classification.

[27]  Henry Rouanet,et al.  Algèbre linéaire et formalisation de la notion de comparaison , 1968 .

[28]  Toon Calders,et al.  Mining All Non-derivable Frequent Itemsets , 2002, PKDD.

[29]  Frank Tip,et al.  Understanding class hierarchies using concept analysis , 2000, TOPL.

[30]  Susanne Prediger,et al.  Logical Scaling in Formal Concept Analysis , 1997, ICCS.

[31]  Bernhard Ganter,et al.  Contextual Attribute Logic , 1999, ICCS.

[32]  Rudolf Wille,et al.  Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts , 2009, ICFCA.

[33]  François Rioult,et al.  Extraction de connaissances dans les bases de donn'ees comportant des valeurs manquantes ou un grand nombre d'attributs , 2005 .

[34]  Gerd Stumme,et al.  Mining frequent patterns with counting inference , 2000, SKDD.

[35]  Wolfgang Hesse,et al.  Formal Concept Analysis Used for Software Analysis and Modelling , 2005, Formal Concept Analysis.

[36]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[37]  Olivier Ridoux,et al.  A Logical Generalization of Formal Concept Analysis , 2000, ICCS.

[38]  Gerd Stumme,et al.  Knowledge acquisition by distributive concept exploration , 1995 .

[39]  Andreas Hotho,et al.  BibSonomy: a social bookmark and publication sharing system , 2006 .

[40]  R. Wille,et al.  On the modal understanding of triadic contexts , 2000 .

[41]  Gregor Snelting,et al.  Reengineering of configurations based on mathematical concept analysis , 1996, TSEM.

[42]  Klaus Biedermann,et al.  Triadic Galois connections , 1997 .

[43]  Gerd Stumme,et al.  A Finite State Model for On-Line Analytical Processing in Triadic Contexts , 2005, ICFCA.

[44]  Gerd Stumme,et al.  Generating a Condensed Representation for Association Rules , 2005, Journal of Intelligent Information Systems.

[45]  Peter W. Eklund,et al.  FCA-Based Browsing and Searching of a Collection of Images , 2006, ICCS.

[46]  Jean-François Boulicaut,et al.  Approximation of Frequency Queris by Means of Free-Sets , 2000, PKDD.

[47]  Mohammed J. Zaki Generating non-redundant association rules , 2000, KDD '00.

[48]  Sebastian Rudolph,et al.  Relational exploration: combining description logics and formal concept analysis for knowledge specification , 2006 .

[49]  Andreas Hotho,et al.  Conceptual Knowledge Processing with Formal Concept Analysis and Ontologies , 2004, ICFCA.

[50]  Bernhard Ganter,et al.  Implications in Triadic Formal Contexts , 2004, ICCS.

[51]  Bernhard Ganter,et al.  Completing Description Logic Knowledge Bases Using Formal Concept Analysis , 2007, IJCAI.

[52]  Gerd Stumme,et al.  Document retrieval for e-mail search and discovery using formal concept analysis , 2003, Appl. Artif. Intell..

[53]  Steffen Staab,et al.  Learning Concept Hierarchies from Text Corpora using Formal Concept Analysis , 2005, J. Artif. Intell. Res..

[54]  Nicolas Pasquier,et al.  Pruning closed itemset lattices for associations rules , 1998, BDA.

[55]  Andreas Hotho,et al.  Information Retrieval in Folksonomies: Search and Ranking , 2006, ESWC.

[56]  Gerd Stumme Conceptual knowledge discovery with frequent concept lattices , 1999 .

[57]  Christophe Rigotti,et al.  A condensed representation to find frequent patterns , 2001, PODS '01.

[58]  Gerd Stumme,et al.  FCA-MERGE: Bottom-Up Merging of Ontologies , 2001, IJCAI.

[60]  Rudolf Wille,et al.  The Basic Theorem of triadic concept analysis , 1995 .

[61]  Guido Boella,et al.  Normative framework for normative system change , 2009, AAMAS 2009.

[62]  Julien Tane,et al.  Query-Based Multicontexts for Knowledge Base Browsing: An Evaluation , 2006, ICCS.

[63]  Guy W. Mineau,et al.  Automatic Structuring of Knowledge Bases by Conceptual Clustering , 1995, IEEE Trans. Knowl. Data Eng..

[64]  Michael Luxenburger,et al.  Implications partielles dans un contexte , 1991 .

[65]  Andreas Hotho,et al.  Discovering shared conceptualizations in folksonomies , 2008, J. Web Semant..

[66]  Pierre Nicole,et al.  La Logique Ou L'art De Penser,: Contenant Outre Les Regles Communes, Plusieurs Observations Nouvelles, Propres À Former Le Jugement.. , 2010 .