Comparison of the hygroscopic behaviour of 205-year-old and recently cut juvenile wood from Pinus sylvestris L.

La reponse hygroscopique du bois juvenile de Pinus sylverstis L. provenant d'arbres recemment coupes de la foret de Valsain en Segovia, Espagne (bois recent) a ete comparee a celle de bois juvenile de la meme espece utilise comme bois de charpente a la fin du XIII e siecle (vieux bois), originaire de la meme foret. Les isothermes de sorption a 35 °C ont ete obtenus par la methode des sels satures, et l'ajustement mathematique utilise etait le modele GAB. LA spectrographie infrarouge et la diffractometrie par rayon X ont ete utilisees pour etudier d'eventuelles differences de composition chimique et l'indices de cristallinite de la paroi cellulaire. La boucle d'adsorption-desorption du vieux bois est au-dessus de celle du bois recent, tandis que le coefficient d'hysteresis est plus eleve dans le vieux bois. Les pics correspondant aux groupes -OH sont similaires, bien que le degre de cristallinite soit significativement plus bas dans le vieux bois. Bien que ces differences de cristallinite puissent expliquer pour une bonne part le contraste hygroscopique entre plus bas dans le vieux bois. Bien que ces differences composes amorphes de la paroi peuvent egalement etre invoquees.

[1]  R. Singh,et al.  Application of GAB model for water sorption isotherms of food products. , 1996 .

[2]  A. F. Richards,et al.  STUDY OF THE GREEN COTTON FIBRES , 2002 .

[3]  P. E. Viollaz,et al.  Equilibrium sorption isotherms and thermodynamic properties of starch and gluten , 1999 .

[4]  Jean-Dominique Daudin,et al.  Development of a new method for fast measurement of water sorption isotherms in the high humidity range Validation on gelatine gel , 2000 .

[5]  Shang-Tzen Chang,et al.  Moisture excluding efficiency and dimensional stability of wood improved by acylation. , 2002, Bioresource technology.

[6]  G. Sèbe,et al.  The Dimensional Stabilisation of Maritime Pine Sapwood (Pinus pinaster) by Chemical Reaction with Organosilicon Compounds , 2000 .

[7]  E. Obataya,et al.  Hygroscopicity of Heattreated Wood III. Effect of steaming on the hygroscopicity of wood , 2002 .

[8]  P. Hermans,et al.  Quantitative X-Ray Investigations on the Crystallinity of Cellulose Fibers. A Background Analysis , 1948 .

[9]  Tatjana Stevanović Janežić,et al.  The Effect of Temperature, Density and Chemical Composition upon the Limit of Hygroscopicity of Wood , 1996 .

[10]  S. Zhang,et al.  Differences in wood properties between juvenile wood and mature wood in 10 species grown in China , 2001, Wood Science and Technology.

[11]  F. G. Fernández,et al.  Saturated salt method determination of hysteresis of Pinus sylvestris L. wood for 35 ºC isotherms , 2004 .

[12]  John F. Siau,et al.  Wood--influence of moisture on physical properties , 1995 .

[13]  K. M. Bhat,et al.  Characterisation of juvenile wood in teak , 2001, Wood Science and Technology.

[14]  F. Puertas,et al.  Empleo de combustibles alternativos en la fabricación de cemento: efecto en las características y propiedades de los clínkeres y cementos , 2004 .

[15]  F. Tanaka,et al.  Hygroscopicity of Heat-treated Wood I. Effects of after-treatments on the hygroscopicity of heat-treated wood , 2000 .

[16]  L. G. Esteban,et al.  Reduction of wood hygroscopicity and associated dimensional response by repeated humidity cycles , 2005, physics/0503174.

[17]  C. Passialis Physico-Chemical Characteristics of Waterlogged Archaeological Wood , 1997 .

[18]  N. L. Owen,et al.  Identifying Softwoods and Hardwoods by Infrared Spectroscopy , 1999 .

[19]  Maria Strømme,et al.  Moisture sorption by cellulose powders of varying crystallinity. , 2004, International journal of pharmaceutics.

[20]  P. Aggarwal,et al.  Moisture adsorption behaviour of esterified rubber wood (Hevea brasiliensis) , 2001, Holz als Roh- und Werkstoff.

[21]  W. Simpson Sorption theories applied to wood. , 2007 .

[22]  K. Edvardsen,et al.  Increased drying temperature – Its influence on the dimensional stability of wood , 1999, Holz als Roh- und Werkstoff.

[23]  S. Y. Wang,et al.  The wood properties of Japanese cedar originated by seed and vegetative reproduction in Taiwan IV. The variation of the degree of crystallinity of cellulose. , 1990 .

[24]  M. Šernek Comparative analysis of inactivated wood surfaces : dissertation submitted to the Faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Wood Science and Forest Products , 2002 .

[25]  Noemi Proietti,et al.  NMR spectroscopy applied to the Cultural Heritage: a preliminary study on ancient wood characterisation , 2004 .

[26]  E. Fabisiak,et al.  Radial variation of earlywood vessel lumen diameter as an indicator of the juvenile growth period in ash (Fraxinus excelsior L.) , 1999, Holz als Roh- und Werkstoff.

[27]  P. Saranpää,et al.  Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies) , 2003, Journal of Wood Science.

[28]  Theodore P. Labuza,et al.  Moisture Sorption: Practical Aspects of Isotherm Measurement and Use , 2000 .

[29]  C. Vaca-Garcia,et al.  Solvent-free fatty acylation of cellulose and lignocellulosic wastes. Part 2: reactions with fatty acids , 1999 .

[30]  P. Saranpää,et al.  The concentration of phenolics in brown-rot decay resistant and susceptible Scots pine heartwood , 2004, Wood Science and Technology.

[31]  Kazuya Minato,et al.  Moisture Adsorption Thermodynamics of Chemically Modified Wood , 1995 .

[32]  Y. S. Kim Chemical characteristics of waterlogged archaeological wood. , 1990 .

[33]  Lennart Salmén,et al.  The association of water to cellulose and hemicellulose in paper examined by FTIR spectroscopy. , 2004, Carbohydrate research.

[34]  Rüdiger Mutz,et al.  Modelling juvenile-mature wood transition in Scots pine (Pinus sylvestris L.) using nonlinear mixed-effects models , 2004 .

[35]  J. Smith Moisture Sorption: Practical Aspects of Isotherm Measurement and Use , 1986 .