Counting occurrences of 132 in an even permutation

We study the generating function for the number of even (or odd) permutations on n letters containing exactly r≥0 occurrences of a 132 pattern. It is shown that finding this function for a given r amounts to a routine check of all permutations in a#x1D516;2r.

[1]  Zvezdelina Stankova Classification of Forbidden Subsequences of Length 4 , 1996, Eur. J. Comb..

[2]  T. Mansour Permutations Containing and Avoiding Certain Patterns , 2000 .

[3]  T. Mansour,et al.  Restricted 132-Avoiding Permutations , 2000, Adv. Appl. Math..

[4]  Julian West,et al.  Forbidden subsequences and Chebyshev polynomials , 1999, Discret. Math..

[5]  Herbert S. Wilf,et al.  Combinatorial Algorithms: An Update , 1987 .

[6]  Aaron Robertson Permutations Containing and Avoiding $\textit{123}$ and $\textit{132}$ Patterns , 1999 .

[7]  Miklós Bóna,et al.  Permutations avoiding certain patterns: The case of length 4 and some generalizations , 1997, Discret. Math..

[8]  Toufik Mansour,et al.  Counting Occurrences of 132 in a Permutation , 2002, Adv. Appl. Math..

[9]  Mike D. Atkinson,et al.  Restricted permutations , 1999, Discret. Math..

[10]  John Noonan The number of permutations containing exactly one increasing subsequence of length three , 1996, Discret. Math..

[11]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[12]  Miklós Bóna Permutations with one or two 132-subsequences , 1998, Discret. Math..

[13]  Zvezdelina Stankova,et al.  Forbidden subsequences , 1994, Discret. Math..

[14]  Markus Fulmek Enumeration of permutations containing a prescribed number of occurrences of a pattern of length three , 2003, Adv. Appl. Math..

[15]  Julian West,et al.  Generating trees and the Catalan and Schröder numbers , 1995, Discret. Math..

[16]  Aaron Robertson Permutations Containing and Avoiding 123 and 132 Patterns , 1999, Discret. Math. Theor. Comput. Sci..

[17]  D. Zeilberger,et al.  The Enumeration of Permutations with a Prescribed Number of “Forbidden” Patterns , 1996, math/9808080.

[18]  M. V. Wilkes,et al.  The Art of Computer Programming, Volume 3, Sorting and Searching , 1974 .

[19]  Miklós Bóna Exact Enumeration of 1342-Avoiding Permutations: A Close Link with Labeled Trees and Planar Maps , 1997, J. Comb. Theory, Ser. A.

[20]  M. Bóna,et al.  The Number of Permutations with Exactlyr132-Subsequences IsP-Recursive in the Size! , 1997 .

[21]  Noga Alon,et al.  On the Number of Permutations Avoiding a Given Pattern , 2000, J. Comb. Theory, Ser. A.

[22]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[23]  Donald Ervin Knuth,et al.  The Art of Computer Programming, 2nd Ed. (Addison-Wesley Series in Computer Science and Information , 1978 .