Counting occurrences of 132 in an even permutation
暂无分享,去创建一个
[1] Zvezdelina Stankova. Classification of Forbidden Subsequences of Length 4 , 1996, Eur. J. Comb..
[2] T. Mansour. Permutations Containing and Avoiding Certain Patterns , 2000 .
[3] T. Mansour,et al. Restricted 132-Avoiding Permutations , 2000, Adv. Appl. Math..
[4] Julian West,et al. Forbidden subsequences and Chebyshev polynomials , 1999, Discret. Math..
[5] Herbert S. Wilf,et al. Combinatorial Algorithms: An Update , 1987 .
[6] Aaron Robertson. Permutations Containing and Avoiding $\textit{123}$ and $\textit{132}$ Patterns , 1999 .
[7] Miklós Bóna,et al. Permutations avoiding certain patterns: The case of length 4 and some generalizations , 1997, Discret. Math..
[8] Toufik Mansour,et al. Counting Occurrences of 132 in a Permutation , 2002, Adv. Appl. Math..
[9] Mike D. Atkinson,et al. Restricted permutations , 1999, Discret. Math..
[10] John Noonan. The number of permutations containing exactly one increasing subsequence of length three , 1996, Discret. Math..
[11] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[12] Miklós Bóna. Permutations with one or two 132-subsequences , 1998, Discret. Math..
[13] Zvezdelina Stankova,et al. Forbidden subsequences , 1994, Discret. Math..
[14] Markus Fulmek. Enumeration of permutations containing a prescribed number of occurrences of a pattern of length three , 2003, Adv. Appl. Math..
[15] Julian West,et al. Generating trees and the Catalan and Schröder numbers , 1995, Discret. Math..
[16] Aaron Robertson. Permutations Containing and Avoiding 123 and 132 Patterns , 1999, Discret. Math. Theor. Comput. Sci..
[17] D. Zeilberger,et al. The Enumeration of Permutations with a Prescribed Number of “Forbidden” Patterns , 1996, math/9808080.
[18] M. V. Wilkes,et al. The Art of Computer Programming, Volume 3, Sorting and Searching , 1974 .
[19] Miklós Bóna. Exact Enumeration of 1342-Avoiding Permutations: A Close Link with Labeled Trees and Planar Maps , 1997, J. Comb. Theory, Ser. A.
[20] M. Bóna,et al. The Number of Permutations with Exactlyr132-Subsequences IsP-Recursive in the Size! , 1997 .
[21] Noga Alon,et al. On the Number of Permutations Avoiding a Given Pattern , 2000, J. Comb. Theory, Ser. A.
[22] Donald E. Knuth,et al. The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .
[23] Donald Ervin Knuth,et al. The Art of Computer Programming, 2nd Ed. (Addison-Wesley Series in Computer Science and Information , 1978 .