Deep Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach

Computer vision systems recently made a big leap thanks to deep neural networks. However, these systems require correctly labeled large datasets in order to be trained properly, which is very difficult to obtain for medical applications. Two main reasons for label noise in medical applications are the high complexity of the data and conflicting opinions of experts. Moreover, medical imaging datasets are commonly tiny, which makes each data very important in learning. As a result, if not handled properly, label noise significantly degrades the performance. Therefore, we propose a label-noise-robust learning algorithm that makes use of the meta-learning paradigm. We tested our proposed solution on retinopathy of prematurity (ROP) dataset with a very high label noise of 68%. Our results show that the proposed algorithm significantly improves the classification algorithm's performance in the presence of noisy labels.

[1]  Ilkay Ulusoy,et al.  Meta Soft Label Generation for Noisy Labels , 2020, 2020 25th International Conference on Pattern Recognition (ICPR).

[2]  Ilkay Ulusoy,et al.  Image Classification with Deep Learning in the Presence of Noisy Labels: A Survey , 2019, ArXiv.

[3]  Hayit Greenspan,et al.  Training a neural network based on unreliable human annotation of medical images , 2018, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).

[4]  Hao Chen,et al.  Robust Learning at Noisy Labeled Medical Images: Applied to Skin Lesion Classification , 2019, 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).

[5]  Jorge A Cuadros,et al.  EyePACS: An Adaptable Telemedicine System for Diabetic Retinopathy Screening , 2009, Journal of diabetes science and technology.

[6]  Li Fei-Fei,et al.  MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels , 2017, ICML.

[7]  Michael F Chiang,et al.  Agreement among pediatric ophthalmologists in diagnosing plus and pre-plus disease in retinopathy of prematurity. , 2008, Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus.

[8]  Richard Nock,et al.  Making Deep Neural Networks Robust to Label Noise: A Loss Correction Approach , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Kun Yi,et al.  Probabilistic End-To-End Noise Correction for Learning With Noisy Labels , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).