Castalia - A Mission to a Main Belt Comet

We describe Castalia, a proposed mission to rendezvous with a Main Belt Comet (MBC), 133P/Elst-Pizarro. MBCs are a recently discovered population of apparently icy bodies within the main asteroid belt between Mars and Jupiter, which may represent the remnants of the population which supplied the early Earth with water. Castalia will perform the first exploration of this population by characterising 133P in detail, solving the puzzle of the MBC’s activity, and making the first in situ measurements of water in the asteroid belt. In many ways a successor to ESA’s highly successful Rosettamission, Castalia will allow direct comparison between very different classes of comet, including measuring critical isotope ratios, plasma and dust properties. It will also feature the first radar system to visit a minor body, mapping the ice in the interior. Castalia was proposed, in slightly different versions, to the ESAM4 and M5 calls within the Cosmic Vision programme. We describe the science motivation for the mission, the measurements required to achieve the scientific goals, and the proposed instrument payload and spacecraft to achieve these. 2017 COSPAR. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

[1]  UK.,et al.  Optical observations of 23 distant Jupiter Family Comets, including 36P/Whipple at multiple phase angles , 2007, 0712.4204.

[2]  Werner Magnes,et al.  The Double Star magnetic field investigation: instrument design, performance and highlights of the first year's observations , 2005 .

[3]  J. Lasue,et al.  Cosmochemical implications of CONSERT permittivity characterization of 67P/CG , 2016 .

[4]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[5]  Ludmilla Kolokolova,et al.  Cometary Science with the James Webb Space Telescope , 2015, 1510.05878.

[6]  E. Palomba,et al.  GIADA: shining a light on the monitoring of the comet dust production from the nucleus of 67P/Churyumov-Gerasimenko , 2015 .

[7]  N. Haghighipour,et al.  Potential Jupiter-Family Comet Contamination of the Main Asteroid Belt , 2016, 1604.08557.

[8]  Jorge Nocedal,et al.  A trust region method based on interior point techniques for nonlinear programming , 2000, Math. Program..

[9]  B. Carry,et al.  Solar System evolution from compositional mapping of the asteroid belt , 2014, Nature.

[10]  T. Owen,et al.  Mars and Earth: Origin and Abundance of Volatiles , 1977, Science.

[11]  T. Owen,et al.  Molecular nitrogen in comet 67P/Churyumov-Gerasimenko indicates a low formation temperature , 2015, Science.

[12]  O. Mousis,et al.  Constraints on the Formation Regions of Comets from their D:H Ratios , 2007 .

[13]  Alan Fitzsimmons,et al.  X-shooter search for outgassing from Main Belt Comet P/2012 T1 (Pan-STARRS) , 2017, 1706.06760.

[14]  Harry Y. McSween,et al.  Meteorites and the early solar system II , 2006 .

[15]  F. Hoyle,et al.  On the Origin of Deuterium , 1973, Nature.

[16]  E. Cupido,et al.  A radiation tolerant digital fluxgate magnetometer , 2007 .

[17]  D. Plettemeier,et al.  The Castalia mission to Main Belt Comet 133P/Elst-Pizarro , 2017, Advances in Space Research.

[18]  A. Rotundi,et al.  Single minerals, carbon- and ice-coated single minerals for calibration of GIADA onboard ROSETTA to comet 67P/Churyumov-Gerasimenko , 2014 .

[19]  Roberto Orosei,et al.  The Main Belt Comets and ice in the Solar System , 2017, 1709.05549.

[20]  Luigi Colangeli,et al.  COMET 67P/CHURYUMOV–GERASIMENKO: CLOSE-UP ON DUST PARTICLE FRAGMENTS , 2016 .

[21]  David Jewitt,et al.  THE STRANGE CASE OF 133P/ELST-PIZARRO: A COMET AMONG THE ASTEROIDS , 2004 .

[22]  H. Balsiger,et al.  D/H and 18 O/ 16 O Ratio in the Hydronium Ion and in Neutral Water from in Situ Ion Measurements in Comet Halley , 1995 .

[23]  Giampiero Naletto,et al.  EVOLUTION OF THE DUST SIZE DISTRIBUTION OF COMET 67P/CHURYUMOV–GERASIMENKO FROM 2.2 au TO PERIHELION , 2016 .

[24]  Y. Langevin,et al.  Typology of dust particles collected by the COSIMA mass spectrometer in the inner coma of 67P/Churyumov Gerasimenko , 2015 .

[25]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[26]  T. Koch,et al.  A high precision calibration system for the simulation of cometary gas environments , 2001 .

[27]  David Jewitt,et al.  A Population of Comets in the Main Asteroid Belt , 2006, Science.

[28]  Michael Lange,et al.  MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission , 2017 .

[29]  Miguel de Val-Borro,et al.  A HERSCHEL STUDY OF D/H IN WATER IN THE JUPITER-FAMILY COMET 45P/HONDA–MRKOS–PAJDUŠÁKOVÁ AND PROSPECTS FOR D/H MEASUREMENTS WITH CCAT , 2013, 1307.6869.

[30]  Ucla,et al.  The return of activity in main-belt comet 133P/Elst–Pizarro , 2009, 0911.5522.

[31]  Alan Fitzsimmons,et al.  The proposed Caroline ESA M3 mission to a Main Belt Comet , 2018, Advances in Space Research.

[32]  S. Debei,et al.  Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun , 2015, Science.

[33]  A. Morbidelli,et al.  The Dynamical Structure of the Kuiper Belt and its Primordial Origin , 2007 .

[34]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[35]  E. Palomba,et al.  Comet 67P/Churyumov-Gerasimenko preserved the pebbles that formed planetesimals , 2016 .

[36]  T. Maue,et al.  The Dawn Framing Camera , 2011 .

[37]  V. Della Corte,et al.  The Grain Impact Analyser and Dust Accumulator (GIADA) Experiment for the Rosetta Mission: Design, Performances and First Results , 2007 .

[38]  Simon F. Green,et al.  GIADA: its status after the Rosetta cruise phase and on-ground activity in support of the encounter with comet 67P/Churyumov-Gerasimenko , 2014 .

[39]  Bruce A. Campbell,et al.  Massive CO2 Ice Deposits Sequestered in the South Polar Layered Deposits of Mars , 2011, Science.

[40]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[41]  Y. Langevin,et al.  A first assessment of the strength of cometary particles collected in-situ by the COSIMA instrument onboard ROSETTA , 2016 .

[42]  F. Robert Solar System Deuterium/Hydrogen Ratio , 2006 .

[43]  A. Connes,et al.  ON THE SPECTRAL CHARACTERIZATION , 2008 .

[44]  S. Debei,et al.  OSIRIS – The Scientific Camera System Onboard Rosetta , 2007 .

[45]  Carle M. Pieters,et al.  Global assessment of pure crystalline plagioclase across the Moon and implications for the evolution of the primary crust , 2014 .

[46]  E. Grün,et al.  DENSITY AND CHARGE OF PRISTINE FLUFFY PARTICLES FROM COMET 67P/CHURYUMOV–GERASIMENKO , 2015 .

[47]  N. Haghighipour Dynamics, Origin, and Activation of Main Belt Comets , 2009, Proceedings of the International Astronomical Union.

[48]  Massimiliano Vasile,et al.  Preliminary Design of Low-Thrust Multiple Gravity-Assist Trajectories , 2006 .

[49]  M. Ceriotti Global optimisation of multiple gravity assist trajectories , 2010 .

[50]  R. Wiens,et al.  A 15N-Poor Isotopic Composition for the Solar System As Shown by Genesis Solar Wind Samples , 2011, Science.

[51]  L. Colangeli,et al.  GIADA – Grain Impact Analyzer and Dust Accumulator – Onboard Rosetta spacecraft: Extended calibrations☆ , 2016 .

[52]  Ian D. Hutcheon,et al.  Isotopic Compositions of Cometary Matter Returned by Stardust , 2006, Science.

[53]  Urs Mall,et al.  Influence of spacecraft outgassing on the exploration of tenuous atmospheres with in situ mass spectrometry , 2010 .

[54]  Roberto Seu,et al.  The SHAllow RADar (SHARAD) Onboard the NASA MRO Mission , 2011, Proceedings of the IEEE.

[55]  J. Berthelier,et al.  Sulphur-bearing species in the coma of comet 67P/Churyumov–Gerasimenko , 2016 .

[56]  D. Jewitt,et al.  ALBEDOS OF MAIN-BELT COMETS 133P/ELST-PIZARRO AND 176P/LINEAR , 2009, 0902.3682.

[57]  D. Jewitt,et al.  THE ACTIVE ASTEROIDS , 2011, 1112.5220.

[58]  T. Owen,et al.  Comets, impacts, and atmospheres. , 1995, Icarus.

[59]  N. Schorghofer The Lifetime of Ice on Main Belt Asteroids , 2008 .

[60]  Joachim M. Blum,et al.  Science case for the Asteroid Impact Mission (AIM): A component of the Asteroid Impact & Deflection Assessment (AIDA) mission , 2016 .

[61]  C. Allen,et al.  The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment , 2010 .

[62]  A. Coradini,et al.  The activity of Main Belt comets , 2010, 1111.5699.

[63]  William A. Fowler,et al.  On the Synthesis of elements at very high temperatures , 1967 .

[64]  Larry Denneau,et al.  The main-belt comets: The Pan-STARRS1 perspective , 2014, 1410.5084.

[65]  G. Cody,et al.  Spectral characterization of analog samples in anticipation of OSIRIS-REx's arrival at Bennu: A blind test study , 2017, Icarus.

[66]  J. De Keyser,et al.  Abundant molecular oxygen in the coma of comet 67P/Churyumov–Gerasimenko , 2015, Nature.

[67]  B. Saggin,et al.  VISTA: A μ-Thermogravimeter for Investigation of Volatile Compounds in Planetary Environments , 2015, Origins of Life and Evolution of Biospheres.

[68]  Simon F. Green,et al.  67P/C-G inner coma dust properties from 2.2 au inbound to 2.0 au outbound to the Sun , 2016 .

[69]  B. Dubrulle,et al.  Constraints on the Formation of Comets from D/H Ratios Measured in H2O and HCN , 2000 .

[70]  Paul Hartogh,et al.  Ocean-like water in the Jupiter-family comet 103P/Hartley 2 , 2011, Nature.

[71]  O. T. Howe A Strange Case , 1883 .

[72]  Richard P. Binzel,et al.  The OSIRIS‐REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations , 2015 .

[73]  D. Prialnik,et al.  Can ice survive in main‐belt comets? Long‐term evolution models of comet 133P/Elst‐Pizarro , 2009 .

[74]  S. Raymond,et al.  OUTWARD MIGRATION OF JUPITER AND SATURN IN 3:2 OR 2:1 RESONANCE IN RADIATIVE DISKS: IMPLICATIONS FOR THE GRAND TACK AND NICE MODELS , 2014, 1410.0543.

[75]  P. Eberhardt,et al.  The D/H and ^18^O/^16^O ratios in water from comet P/Halley. , 1995 .

[76]  A. Gibbings,et al.  Laser ablation for the deflection, exploration and exploitation of near Earth asteroids , 2014 .

[77]  L. Duvet,et al.  Rosina – Rosetta Orbiter Spectrometer for Ion and Neutral Analysis , 2007 .

[78]  P. Lucey,et al.  Constraints on olivine‐rich rock types on the Moon as observed by Diviner and M3: Implications for the formation of the lunar crust , 2016 .

[79]  E. Neefs,et al.  67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio , 2015, Science.

[80]  James P. Evans The Origin , 2009, Genetics in Medicine.

[81]  E. Grün,et al.  Cosima – High Resolution Time-of-Flight Secondary Ion Mass Spectrometer for the Analysis of Cometary Dust Particles onboard Rosetta , 2007 .

[82]  D. Murtagh,et al.  Isotopic ratios of H, C, N, O, and S in comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy) , 2016, 1603.05006.

[83]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[84]  K.-H. Glassmeier,et al.  The Cassini Magnetic Field Investigation , 2004 .

[85]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[86]  Miguel de Val-Borro,et al.  DETERMINATION OF AN UPPER LIMIT FOR THE WATER OUTGASSING RATE OF MAIN-BELT COMET P/2012 T1 (PANSTARRS) , 2013 .

[87]  Chris H. Okubo,et al.  Dielectric properties of lava flows west of Ascraeus Mons, Mars , 2009 .

[88]  M. Malin,et al.  The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission , 2004 .

[89]  Harold F. Levison,et al.  Contamination of the asteroid belt by primordial trans-Neptunian objects , 2009, Nature.

[90]  Jean-Pierre Lebreton,et al.  Birth of a comet magnetosphere: A spring of water ions , 2015, Science.

[91]  Nicolas Altobelli,et al.  Simulated measurements of 67P/Churyumov-Gerasimenko dust coma at 3 AU by the Rosetta GIADA instrument using the GIPSI tool , 2014, Astron. Comput..

[92]  H. Boehnhardt,et al.  Testing the comet nature of main belt comets. The spectra of 133P/Elst-Pizarro and 176P/LINEAR , 2011, 1104.0879.

[93]  H. Rauer,et al.  Impact-Induced Activity of the Asteroid-Comet P/1996N2 Elst-Pizarro: Yes or No? , 1998 .

[94]  François Robert,et al.  The Solar System d/h Ratio: Observations and Theories , 2000 .

[95]  J. Crovisier,et al.  The composition of cometary volatiles , 2004 .

[96]  S. Epstein,et al.  D/H and O-18/O-16 ratios of H2O in the 'rusty' breccia 66095 and the origin of 'lunar water' , 1974 .

[97]  H. Balsiger,et al.  Development of a low energy ion source for ROSINA ion mode calibration , 2006 .

[98]  H. Hsieh The Hawaii Trails Project: Comet-Hunting in the Main Asteroid Belt , 2009, 0907.5505.

[99]  D. Plettemeier,et al.  Direct observations of asteroid interior and regolith structure: Science measurement requirements , 2017, Advances in Space Research.