Comparison of Heuristics for the Colorful Traveling Salesman Problem

In the Colorful Traveling Salesman Problem (CTSP), given a graph G with a (not necessarily distinct) label (color) assigned to each edge, a Hamiltonian tour with the minimum number of different labels is sought. The problem is a variant of the well-known Hamiltonian Cycle problem and has potential applications in telecommunication networks, optical networks, and multimodal transportation networks, in which one aims to ensure connectivity or other properties by means of a limited number of connection types. We propose two new heuristics based on the deconstruction of a Hamiltonian tour into subpaths and their reconstruction into a new tour, as well as an adaptation of an existing approach. Extensive experimentation shows the effectiveness of the proposed approaches.

[1]  Bruce L. Golden,et al.  A one-parameter genetic algorithm for the minimum labeling spanning tree problem , 2005, IEEE Transactions on Evolutionary Computation.

[2]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[3]  E. Kay,et al.  Graph Theory. An Algorithmic Approach , 1975 .

[4]  Gilbert Laporte,et al.  A branch-and-cut algorithm for the minimum labeling Hamiltonian cycle problem and two variants , 2011, Comput. Oper. Res..

[5]  William Kocay,et al.  An extension of the multi-path algorithm for finding hamilton cycles , 1992, Discret. Math..

[6]  Raffaele Cerulli,et al.  The labeled maximum matching problem , 2009, Comput. Oper. Res..

[7]  Paolo Dell'Olmo,et al.  Heuristic approaches for the Minimum Labelling Hamiltonian Cycle Problem , 2006, Electron. Notes Discret. Math..

[8]  Bruce L. Golden,et al.  Improved Heuristics for the Minimum Label Spanning Tree Problem , 2006, IEEE Transactions on Evolutionary Computation.

[9]  Bruce L. Golden,et al.  The Colorful Traveling Salesman Problem , 2007 .

[10]  Inbal Yahav,et al.  Comparison of Heuristics for Solving the Gmlst Problem , 2008 .

[11]  Sven Oliver Krumke,et al.  On the Minimum Label Spanning Tree Problem , 1998, Inf. Process. Lett..

[12]  Raffaele Cerulli,et al.  Extensions of the minimum labelling spanning tree problem , 2006 .

[13]  Xueliang Li,et al.  Spanning trees with many or few colors in edge-colored graphs , 1997, Discuss. Math. Graph Theory.

[14]  Refael Hassin,et al.  Approximation algorithms and hardness results for labeled connectivity problems , 2006, J. Comb. Optim..

[15]  Robert D. Carr,et al.  On the red-blue set cover problem , 2000, SODA '00.

[16]  Guoliang Chen,et al.  A note on the minimum label spanning tree , 2002, Inf. Process. Lett..

[17]  Ruay-Shiung Chang,et al.  The Minimum Labeling Spanning Trees , 1997, Inf. Process. Lett..

[18]  Stefan Voß,et al.  Metaheuristics Comparison for the Minimum Labelling Spanning Tree Problem , 2005 .

[19]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[20]  Jérôme Monnot,et al.  On Labeled Traveling Salesman Problems , 2008, ISAAC.

[21]  Gerhard J. Woeginger,et al.  Paths and cycles in colored graphs , 2001, Australas. J Comb..

[22]  Alan M. Frieze,et al.  Multicoloured Hamilton Cycles , 1995, Electron. J. Comb..

[23]  Bruce L. Golden,et al.  Worst-case behavior of the MVCA heuristic for the minimum labeling spanning tree problem , 2005, Oper. Res. Lett..

[24]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .