The papillomavirus E2 proteins.

The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein.

[1]  N. Maitland,et al.  Phenotypic effects of HPV-16 E2 protein expression in human keratinocytes. , 2010, Virology.

[2]  V. Wilson,et al.  Common importin alpha specificity for papillomavirus E2 proteins. , 2010, Virus research.

[3]  Chi-Jung Huang,et al.  Physical and functional interactions of human papillomavirus E2 protein with nuclear receptor coactivators. , 2007, Biochemical and biophysical research communications.

[4]  Raghunath Chatterjee,et al.  CpG methylation recruits sequence specific transcription factors essential for tissue specific gene expression. , 2012, Biochimica et biophysica acta.

[5]  E. Garrido,et al.  Specific in vitro Interaction between Papillomavirus E2 Proteins and TBP-Associated Factors , 2004, Intervirology.

[6]  E. Androphy,et al.  ChlR1 is required for loading papillomavirus E2 onto mitotic chromosomes and viral genome maintenance. , 2006, Molecular cell.

[7]  Jennifer A. Smith,et al.  Brd4 Regulation of Papillomavirus Protein E2 Stability , 2009, Journal of Virology.

[8]  H. Bernard,et al.  Effects of cellular differentiation, chromosomal integration and 5-aza-2'-deoxycytidine treatment on human papillomavirus-16 DNA methylation in cultured cell lines. , 2008, Virology.

[9]  H. Pfister,et al.  The Papillomavirus E2 Protein Binds to and Synergizes with C/EBP Factors Involved in Keratinocyte Differentiation , 2003, Journal of Virology.

[10]  P. Howley,et al.  Transactivation of a bovine papilloma virus transcriptional regulatory element by the E2 gene product , 1985, Cell.

[11]  M. Donaldson,et al.  Human papillomavirus 16 E2 stability and transcriptional activation is enhanced by E1 via a direct protein-protein interaction. , 2011, Virology.

[12]  Dan Chen,et al.  Papillomaviruses Use Recombination-Dependent Replication to Vegetatively Amplify Their Genomes in Differentiated Cells , 2013, PLoS pathogens.

[13]  A. McBride,et al.  Bovine Papillomavirus Type 1 Genomes and the E2 Transactivator Protein Are Closely Associated with Mitotic Chromatin , 1998, Journal of Virology.

[14]  E. Flores,et al.  Evidence for a switch in the mode of human papillomavirus type 16 DNA replication during the viral life cycle , 1997, Journal of virology.

[15]  P. Lambert,et al.  Bovine papillomavirus type 1 E2 transcriptional regulators directly bind two cellular transcription factors, TFIID and TFIIB , 1995, Journal of virology.

[16]  C. Moskaluk,et al.  The bovine papillomavirus type 1 transcriptional activator E2 protein binds to its DNA recognition sequence as a dimer. , 1989, Virology.

[17]  K. Alexander,et al.  Human TATA Binding Protein Inhibits Human Papillomavirus Type 11 DNA Replication by Antagonizing E1-E2 Protein Complex Formation on the Viral Origin of Replication , 2002, Journal of Virology.

[18]  R D Klausner,et al.  Conserved cysteine residue in the DNA-binding domain of the bovine papillomavirus type 1 E2 protein confers redox regulation of the DNA-binding activity in vitro. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[19]  M. Botchan,et al.  The activation domain of the bovine papillomavirus E2 protein mediates association of DNA-bound dimers to form DNA loops. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[20]  David I. Smith,et al.  Common fragile sites, extremely large genes, neural development and cancer. , 2006, Cancer letters.

[21]  J. Dillner,et al.  Induction of bovine papillomavirus E2 gene expression and early region transcription by cell growth arrest: correlation with viral DNA amplification and evidence for differential promoter induction , 1990, Journal of virology.

[22]  J. Archambault,et al.  Proteasomal Degradation of the Papillomavirus E2 Protein Is Inhibited by Overexpression of Bromodomain-Containing Protein 4 , 2009, Journal of Virology.

[23]  D. Lowy,et al.  Bovine papilloma virus-transformed cells contain multiple E2 proteins. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[24]  S. Titolo,et al.  Identification of Domains of the Human Papillomavirus Type 11 E1 Helicase Involved in Oligomerization and Binding to the Viral Origin , 2000, Journal of Virology.

[25]  M. Botchan,et al.  The X-ray structure of the papillomavirus helicase in complex with its molecular matchmaker E2. , 2004, Genes & development.

[26]  E. Androphy,et al.  Sequences flanking the core DNA-binding domain of bovine papillomavirus type 1 E2 contribute to DNA-binding function , 1997, Journal of virology.

[27]  P. Howley,et al.  Suppression of cellular proliferation by the papillomavirus E2 protein , 1995, Journal of virology.

[28]  R. Mitra,et al.  The Papillomavirus E1 Helicase Activates a Cellular DNA Damage Response in Viral Replication Foci , 2011, Journal of Virology.

[29]  D. Ganem,et al.  The Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus Permits Replication of Terminal Repeat-Containing Plasmids , 2003, Journal of Virology.

[30]  F. Stubenrauch,et al.  Differential Requirements for Conserved E2 Binding Sites in the Life Cycle of Oncogenic Human Papillomavirus Type 31 , 1998, Journal of Virology.

[31]  J. D. Benson,et al.  Mapping and characterization of the interaction domains of human papillomavirus type 16 E1 and E2 proteins , 1997, Journal of virology.

[32]  J. Archambault,et al.  Nuclear Accumulation of the Papillomavirus E1 Helicase Blocks S-Phase Progression and Triggers an ATM-Dependent DNA Damage Response , 2011, Journal of Virology.

[33]  D. DiMaio,et al.  Human Papillomavirus E7 Repression in Cervical Carcinoma Cells Initiates a Transcriptional Cascade Driven by the Retinoblastoma Family, Resulting in Senescence , 2006, Journal of Virology.

[34]  P. Winokur,et al.  Separation of the transcriptional activation and replication functions of the bovine papillomavirus‐1 E2 protein. , 1992, The EMBO journal.

[35]  E. Taylor,et al.  UVB irradiation reduces the half-life and transactivation potential of the human papillomavirus 16 E2 protein , 2003, Oncogene.

[36]  M. Ozbun,et al.  Sumoylation dynamics during keratinocyte differentiation , 2006, Journal of Cell Science.

[37]  M. Yaniv,et al.  Structural and mutational analysis of E2 trans‐activating proteins of papillomaviruses reveals three distinct functional domains. , 1988, The EMBO journal.

[38]  T. Iftner,et al.  Identification of the E9^E2C cDNA and Functional Characterization of the Gene Product Reveal a New Repressor of Transcription and Replication in Cottontail Rabbit Papillomavirus , 2003, Journal of Virology.

[39]  C. M. Sanders,et al.  Characterization of human papillomavirus type 16 E2 protein and subdomains expressed in insect cells. , 1995, Virology.

[40]  G. Shaw,et al.  Human Papillomavirus DNA Replication Compartments in a Transient DNA Replication System , 1999, Journal of Virology.

[41]  J. Bradner,et al.  Recruitment of Brd4 to the Human Papillomavirus Type 16 DNA Replication Complex Is Essential for Replication of Viral DNA , 2013, Journal of Virology.

[42]  I. Ilves,et al.  Long-Term Episomal Maintenance of Bovine Papillomavirus Type 1 Plasmids Is Determined by Attachment to Host Chromosomes, Which Is Mediated by the Viral E2 Protein and Its Binding Sites , 1999, Journal of Virology.

[43]  L. Turek,et al.  The E8∧E2 Gene Product of Human Papillomavirus Type 16 Represses Early Transcription and Replication but Is Dispensable for Viral Plasmid Persistence in Keratinocytes , 2008, Journal of Virology.

[44]  A. McBride,et al.  Domains of the BPV-1 E1 replication protein required for origin-specific DNA binding and interaction with the E2 transactivator. , 1995, Virology.

[45]  M. Campo,et al.  Both viral E2 protein and the cellular factor PEBP2 regulate transcription via E2 consensus sites within the bovine papillomavirus type 4 long control region , 1995, Journal of virology.

[46]  A. Stenlund,et al.  Separate domains in E1 and E2 proteins serve architectural and productive roles for cooperative DNA binding , 2000, The EMBO journal.

[47]  J. Settleman,et al.  Bovine papillomavirus mutant temperature sensitive for transformation, replication and transactivation. , 1988, The EMBO journal.

[48]  H. Pfister,et al.  Competitive binding of viral E2 protein and mammalian core-binding factor to transcriptional control sequences of human papillomavirus type 8 and bovine papillomavirus type 1 , 1997, Journal of virology.

[49]  P. Howley,et al.  Genetic assignment of multiple E2 gene products in bovine papillomavirus-transformed cells , 1989, Journal of virology.

[50]  C. Demeret,et al.  Direct activation of caspase 8 by the proapoptotic E2 protein of HPV18 independent of adaptor proteins , 2008, Cell Death and Differentiation.

[51]  K. Yamane,et al.  A Functional Interaction between the Human Papillomavirus 16 Transcription/Replication Factor E2 and the DNA Damage Response Protein TopBP1* , 2002, The Journal of Biological Chemistry.

[52]  L. Turek,et al.  Transcriptional regulation of the human papillomavirus‐16 E6‐E7 promoter by a keratinocyte‐dependent enhancer, and by viral E2 trans‐activator and repressor gene products: implications for cervical carcinogenesis. , 1987, The EMBO journal.

[53]  H. Cubie,et al.  Methylation of the human papillomavirus-18 L1 gene: a biomarker of neoplastic progression? , 2006, Virology.

[54]  P. Howley,et al.  Brd4-Independent Transcriptional Repression Function of the Papillomavirus E2 Proteins , 2007, Journal of Virology.

[55]  I. Ilves,et al.  Brd4 Is Involved in Multiple Processes of the Bovine Papillomavirus Type 1 Life Cycle , 2006, Journal of Virology.

[56]  J. Settleman,et al.  Inhibition of cervical carcinoma cell line proliferation by the introduction of a bovine papillomavirus regulatory gene , 1993, Journal of virology.

[57]  G. Steger,et al.  Cooperative Activation of Human Papillomavirus Type 8 Gene Expression by the E2 Protein and the Cellular Coactivator p300 , 2002, Journal of Virology.

[58]  P. Howley,et al.  Transcriptional trans-activation by the human papillomavirus type 16 E2 gene product , 1987, Journal of virology.

[59]  M. Ustav,et al.  Bovine papillomavirus type 1 E2 protein heterodimer is functional in papillomavirus DNA replication in vivo. , 2009, Virology.

[60]  M. Botchan,et al.  Segregation of viral plasmids depends on tethering to chromosomes and is regulated by phosphorylation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[61]  M. Botchan,et al.  The E2 trans-activator can act as a repressor by interfering with a cellular transcription factor. , 1990, Genes & development.

[62]  R. Hegde,et al.  The Structural Basis of DNA Target Discrimination by Papillomavirus E2 Proteins* , 2000, The Journal of Biological Chemistry.

[63]  E. Androphy,et al.  Mitotic Kinesin-Like Protein 2 Binds and Colocalizes with Papillomavirus E2 during Mitosis , 2006, Journal of Virology.

[64]  E. Androphy,et al.  AMF-1/Gps2 Binds p300 and Enhances Its Interaction with Papillomavirus E2 Proteins , 2000, Journal of Virology.

[65]  D. Lim,et al.  HPV16 E2 is an immediate early marker of viral infection, preceding E7 expression in precursor structures of cervical carcinoma. , 2010, Cancer research.

[66]  J. Choe,et al.  Human Papillomavirus E2 Down-regulates the Human Telomerase Reverse Transcriptase Promoter* , 2002, The Journal of Biological Chemistry.

[67]  E. Androphy,et al.  Functional Interaction of the Bovine Papillomavirus E2 Transactivation Domain with TFIIB , 1998, Journal of Virology.

[68]  D. DiMaio,et al.  Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of dormant tumor suppressor pathways. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[69]  Yong Fang,et al.  Triggering of death receptor apoptotic signaling by human papillomavirus 16 E2 protein in cervical cancer cell lines is mediated by interaction with c-FLIP , 2010, Apoptosis.

[70]  R. Jia,et al.  Human papillomavirus type 16 E2 and E6 are RNA-binding proteins and inhibit in vitro splicing of pre-mRNAs with suboptimal splice sites. , 2009, Virology.

[71]  P. Lambert,et al.  Interaction of the papillomavirus transcription/replication factor, E2, and the viral capsid protein, L2. , 2000, Virology.

[72]  P. Howley,et al.  The functional BPV-1 E2 trans-activating protein can act as a repressor by preventing formation of the initiation complex. , 1991, Genes & development.

[73]  N. Gassler,et al.  Expression of the HPV11 E2 gene in transgenic mice does not result in alterations of the phenotypic pattern , 2008, Transgenic Research.

[74]  F. Stubenrauch,et al.  Transactivation by the E2 Protein of Oncogenic Human Papillomavirus Type 31 Is Not Essential for Early and Late Viral Functions , 1998, Journal of Virology.

[75]  H. Pfister,et al.  The Human Papillomavirus Type 8 E2 Protein Suppresses β4-Integrin Expression in Primary Human Keratinocytes , 2004, Journal of Virology.

[76]  E. Androphy,et al.  Crystal structure of the E2 DNA-binding domain from human papillomavirus type 16: implications for its DNA binding-site selection mechanism. , 1998, Journal of molecular biology.

[77]  J. Ludes-Meyers,et al.  Isolation of an amino-terminal region of bovine papillomavirus type 1 E1 protein that retains origin binding and E2 interaction capacity , 1997, Journal of virology.

[78]  P. Howley,et al.  Transcriptional transActivation by the Human Papillomavirus Type 16 E 2 Gene Product , 2022 .

[79]  F. Méchali,et al.  High-Risk But Not Low-Risk HPV E2 Proteins Bind to the APC Activators Cdh1 and Cdc20 and Cause Genomic Instability , 2005, Cell cycle.

[80]  N. Jareborg,et al.  Evidence that the transcriptional trans-activating function of the bovine papillomavirus type 1 E2 gene is not required for viral DNA amplification in division-arrested cells. , 1992, The Journal of general virology.

[81]  A. McBride,et al.  Phosphorylation Regulates Binding of the Human Papillomavirus Type 8 E2 Protein to Host Chromosomes , 2012, Journal of Virology.

[82]  A. McBride,et al.  Current Understanding of the Role of the Brd4 Protein in the Papillomavirus Lifecycle , 2013, Viruses.

[83]  J. G. Oliveira,et al.  Variations in the association of papillomavirus E2 proteins with mitotic chromosomes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[84]  A. McBride,et al.  Interaction of the Betapapillomavirus E2 Tethering Protein with Mitotic Chromosomes , 2009, Journal of Virology.

[85]  L. Joshua-Tor,et al.  The DNA-binding Domain of Human Papillomavirus Type 18 E1 , 2004, Journal of Biological Chemistry.

[86]  P. Howley,et al.  Mechanisms of Human Papillomavirus E2-Mediated Repression of Viral Oncogene Expression and Cervical Cancer Cell Growth Inhibition , 2000, Journal of Virology.

[87]  R. Hegde The papillomavirus E2 proteins: structure, function, and biology. , 2002, Annual review of biophysics and biomolecular structure.

[88]  C. Moskaluk,et al.  Interaction of the bovine papillomavirus type 1 E2 transcriptional control protein with the viral enhancer: purification of the DNA-binding domain and analysis of its contact points with DNA , 1988, Journal of virology.

[89]  D. Kwon,et al.  Papillomavirus E2 Proteins and the Host Brd4 Protein Associate with Transcriptionally Active Cellular Chromatin , 2009, Journal of Virology.

[90]  Caroline Demeret,et al.  Send Orders of Reprints at Bspsaif@emirates.net.ae the Hpv E2-host Protein-protein Interactions: a Complex Hijacking of the Cellular Network , 2022 .

[91]  D. Egan,et al.  Structure of the E2 DNA-binding domain from human papillomavirus serotype 31 at 2.4 A. , 1998, Acta crystallographica. Section D, Biological crystallography.

[92]  A. Stenlund E1 initiator DNA binding specificity is unmasked by selective inhibition of non‐specific DNA binding , 2003, The EMBO journal.

[93]  M. Ustav,et al.  Identification of the origin of replication of bovine papillomavirus and characterization of the viral origin recognition factor E1. , 1991, The EMBO journal.

[94]  S. Smola,et al.  Human Papillomavirus Type 8 E2 Protein Unravels JunB/Fra-1 as an Activator of the β4-Integrin Gene in Human Keratinocytes , 2009, Journal of Virology.

[95]  S. Baldus,et al.  E2 and the co-activator p300 can cooperate in activation of the human papillomavirus type 16 early promoter. , 2008, Virology.

[96]  M. Garcia-Alai,et al.  The human papillomavirus E7-E2 interaction mechanism in vitro reveals a finely tuned system for modulating available E7 and E2 proteins. , 2009, Biochemistry.

[97]  M. Stanley,et al.  The interaction between human papillomavirus type 16 E1 and E2 proteins is blocked by an antibody to the N-terminal region of E2. , 1995, European journal of biochemistry.

[98]  P. Howley,et al.  Bromodomain Protein 4 Mediates the Papillomavirus E2 Transcriptional Activation Function , 2006, Journal of Virology.

[99]  J. Gunaratne,et al.  HPV-18 E2^E4 chimera: 2 new spliced transcripts and proteins induced by keratinocyte differentiation. , 2012, Virology.

[100]  S. Graham,et al.  SF2/ASF Binds the Human Papillomavirus Type 16 Late RNA Control Element and Is Regulated during Differentiation of Virus-Infected Epithelial Cells , 2004, Journal of Virology.

[101]  T. Iftner,et al.  Interaction of the Papillomavirus E8∧E2C Protein with the Cellular CHD6 Protein Contributes to Transcriptional Repression , 2010, Journal of Virology.

[102]  V. Wilson,et al.  Host cell sumoylation level influences papillomavirus E2 protein stability. , 2009, Virology.

[103]  E. Androphy,et al.  Functional interaction of a novel cellular protein with the papillomavirus E2 transactivation domain , 1997, Molecular and cellular biology.

[104]  Cary A Moody,et al.  Human Papillomaviruses Activate the ATM DNA Damage Pathway for Viral Genome Amplification upon Differentiation , 2009, PLoS pathogens.

[105]  L. Banks,et al.  The Mdm2 Ubiquitin Ligase Enhances Transcriptional Activity of Human Papillomavirus E2 , 2008, Journal of Virology.

[106]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[107]  J. D. Benson,et al.  Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions , 1996, Journal of virology.

[108]  T. Mandel,et al.  Cis and trans requirements for stable episomal maintenance of the BPV‐1 replicator. , 1996, The EMBO journal.

[109]  M. Botchan,et al.  Competition for DNA Binding Sites between the Short and Long Forms of E2 Dimers Underlies Repression in Bovine Papillomavirus Type 1 DNA Replication Control , 1998, Journal of Virology.

[110]  V. Wilson,et al.  Modification of papillomavirus E2 proteins by the small ubiquitin-like modifier family members (SUMOs). , 2008, Virology.

[111]  D. Lowy,et al.  The specific DNA recognition sequence of the bovine papillomavirus E2 protein is an E2‐dependent enhancer. , 1988, The EMBO journal.

[112]  P. Fuchs,et al.  Unique topography of DNA-protein interactions in the non-coding region of epidermodysplasia verruciformis-associated human papillomaviruses. , 1991, The Journal of general virology.

[113]  Jennifer A. Smith,et al.  NCoR1 Mediates Papillomavirus E8^E2C Transcriptional Repression , 2010, Journal of Virology.

[114]  D. Pim,et al.  Characterization of the human papillomavirus E2 protein: evidence of trans‐activation and trans‐repression in cervical keratinocytes. , 1994, The EMBO journal.

[115]  J. Settleman,et al.  Bovine papillomavirus E2 repressor mutant displays a high-copy-number phenotype and enhanced transforming activity , 1990, Journal of virology.

[116]  C. Moskaluk,et al.  The E2 "gene" of bovine papillomavirus encodes an enhancer-binding protein. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[117]  T. Iftner,et al.  Inhibition of Transcription and DNA Replication by the Papillomavirus E8⁁E2C Protein Is Mediated by Interaction with Corepressor Molecules , 2008, Journal of Virology.

[118]  M. Ustav,et al.  Human papillomavirus E2 protein with single activation domain initiates HPV18 genome replication, but is not sufficient for long-term maintenance of virus genome. , 2010, Virology.

[119]  P. McIntosh,et al.  A novel interaction between the human papillomavirus type 16 E2 and E1--E4 proteins leads to stabilization of E2. , 2009, Virology.

[120]  A. Antson,et al.  Dimerization of the Human Papillomavirus Type 16 E2 N Terminus Results in DNA Looping within the Upstream Regulatory Region , 2008, Journal of Virology.

[121]  C. Johansson,et al.  The human papillomavirus 16 E2 protein is stabilised in S phase. , 2009, Virology.

[122]  H. Mizuno,et al.  A mutation study of the DNA binding domain of human papillomavirus type11 E2 protein. , 1997, Journal of biochemistry.

[123]  T. Iftner,et al.  A Transactivator Function of Cottontail Rabbit Papillomavirus E2 Is Essential for Tumor Induction in Rabbits , 2002, Journal of Virology.

[124]  M. Botchan,et al.  The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication , 1993, Cell.

[125]  P. Howley,et al.  Phosphorylation sites of the E2 transcriptional regulatory proteins of bovine papillomavirus type 1 , 1989, Journal of virology.

[126]  A. McBride,et al.  An acidic amphipathic helix in the Bovine Papillomavirus E2 protein is critical for DNA replication and interaction with the E1 protein. , 2005, Virology.

[127]  A. Rogers,et al.  Evolutionary variation of papillomavirus E2 protein and E2 binding sites , 2011, Virology Journal.

[128]  M. Bycroft,et al.  Equilibrium dissociation and unfolding of the dimeric human papillomavirus strain‐16 E2 DNA‐binding domain , 1996, Protein science : a publication of the Protein Society.

[129]  P. Howley,et al.  A bovine papillomavirus constitutive enhancer is negatively regulated by the E2 repressor through competitive binding for a cellular factor , 1990, Journal of virology.

[130]  P. Howley,et al.  Phenotypic analysis of bovine papillomavirus type 1 E2 repressor mutants , 1990, Journal of virology.

[131]  C. M. Sanders,et al.  Recruitment and loading of the E1 initiator protein: an ATP‐dependent process catalysed by a transcription factor , 1998, The EMBO journal.

[132]  A. Narechania,et al.  Overlapping reading frames in closely related human papillomaviruses result in modular rates of selection within E2. , 2005, The Journal of general virology.

[133]  E. Androphy,et al.  Transactivation-Competent Bovine Papillomavirus E2 Protein Is Specifically Required for Efficient Repression of Human Papillomavirus Oncogene Expression and for Acute Growth Inhibition of Cervical Carcinoma Cell Lines , 1998, Journal of Virology.

[134]  T. R. Broker,et al.  The Hinge of the Human Papillomavirus Type 11 E2 Protein Contains Major Determinants for Nuclear Localization and Nuclear Matrix Association , 2000, Journal of Virology.

[135]  B. Coulombe,et al.  Amino acid substitutions that specifically impair the transcriptional activity of papillomavirus E2 affect binding to the long isoform of Brd4. , 2007, Virology.

[136]  P. Howley,et al.  E 2 polypeptides encoded by bovine papillomavirus type 1 form dimers through the common carboxyl-terminal domain : Transactivation is mediated by the conserved amino-terminal domain ( transcriptional regulation / DNA-protein interaction ) , 2022 .

[137]  M. Botchan,et al.  A papillomavirus E2 phosphorylation mutant exhibits normal transient replication and transcription but is defective in transformation and plasmid retention , 1997, Journal of virology.

[138]  S. Cha,et al.  hSNF5 Is Required for Human Papillomavirus E2-Driven Transcriptional Activation and DNA Replication , 2010, Intervirology.

[139]  D. Lowy,et al.  Bovine papillomavirus E2 trans-activating gene product binds to specific sites in papillomavirus DNA , 1987, Nature.

[140]  T. Iftner,et al.  Influence of HPV16 E2 and its localisation on the expression of matrix metalloproteinase-9. , 2010, International journal of oncology.

[141]  D. DiMaio,et al.  Rapid induction of senescence in human cervical carcinoma cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[142]  T. Iftner,et al.  The Papillomavirus E8∧E2C Protein Represses DNA Replication from Extrachromosomal Origins , 2003, Molecular and Cellular Biology.

[143]  G. Steger,et al.  Direct Interaction between Nucleosome Assembly Protein 1 and the Papillomavirus E2 Proteins Involved in Activation of Transcription , 2004, Molecular and Cellular Biology.

[144]  C. M. Sanders,et al.  Transcription Factor-dependent Loading of the E1 Initiator Reveals Modular Assembly of the Papillomavirus Origin Melting Complex* , 2000, The Journal of Biological Chemistry.

[145]  Shwu‐Yuan Wu,et al.  Human papillomavirus (HPV) origin-binding protein associates with mitotic spindles to enable viral DNA partitioning , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[146]  S. Schuck,et al.  Surface Mutagenesis of the Bovine Papillomavirus E1 DNA Binding Domain Reveals Residues Required for Multiple Functions Related to DNA Replication , 2006, Journal of Virology.

[147]  T. Iftner,et al.  The E8^E2C Protein, a Negative Regulator of Viral Transcription and Replication, Is Required for Extrachromosomal Maintenance of Human Papillomavirus Type 31 in Keratinocytes , 2000, Journal of Virology.

[148]  M. Botchan,et al.  Acidic transcription factors alleviate nucleosome-mediated repression of DNA replication of bovine papillomavirus type 1. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[149]  G. Steger,et al.  The hinge region of the human papillomavirus type 8 E2 protein activates the human p21(WAF1/CIP1) promoter via interaction with Sp1. , 2002, The Journal of general virology.

[150]  C. Cooper,et al.  Identification of single amino acids in the human papillomavirus 11 E2 protein critical for the transactivation or replication functions. , 1998, Virology.

[151]  M. Ustav,et al.  Engagement of the ATR-Dependent DNA Damage Response at the Human Papillomavirus 18 Replication Centers during the Initial Amplification , 2012, Journal of Virology.

[152]  B. Simizu,et al.  Detection of the human papillomavirus 6b E2 gene product in genital condyloma and laryngeal papilloma tissues. , 1989, Virology.

[153]  A. McBride Replication and partitioning of papillomavirus genomes. , 2008, Advances in virus research.

[154]  M. Lai,et al.  A Human Papillomavirus E2 Transcriptional Activator , 1999, The Journal of Biological Chemistry.

[155]  R. Roden,et al.  Tissue-Spanning Redox Gradient-Dependent Assembly of Native Human Papillomavirus Type 16 Virions , 2009, Journal of Virology.

[156]  M. Barbosa,et al.  E2 of cottontail rabbit papillomavirus is a nuclear phosphoprotein translated from an mRNA encoding multiple open reading frames , 1988, Journal of virology.

[157]  D. Pim,et al.  Interaction between the HPV-16 E2 transcriptional activator and p53 , 1999, Oncogene.

[158]  T. Iftner,et al.  The E8 Domain Confers a Novel Long-Distance Transcriptional Repression Activity on the E8^E2C Protein of High-Risk Human Papillomavirus Type 31 , 2001, Journal of Virology.

[159]  M. Frattini,et al.  Binding of the human papillomavirus E1 origin-recognition protein is regulated through complex formation with the E2 enhancer-binding protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[160]  M. Yaniv,et al.  The BPV1‐E2 trans‐acting protein can be either an activator or a repressor of the HPV18 regulatory region. , 1987, The EMBO journal.

[161]  T. Iftner,et al.  The E8 repression domain can replace the E2 transactivation domain for growth inhibition of HeLa cells by papillomavirus E2 proteins , 2007, International journal of cancer.

[162]  F. Stubenrauch,et al.  E2 represses the late gene promoter of human papillomavirus type 8 at high concentrations by interfering with cellular factors , 1996, Journal of virology.

[163]  E. Androphy,et al.  Acetylation of Conserved Lysines in Bovine Papillomavirus E2 by p300 , 2012, Journal of Virology.

[164]  P. Monini,et al.  Cooperative DNA binding of the bovine papillomavirus E2 transcriptional activator is antagonized by truncated E2 polypeptides , 1993, Journal of virology.

[165]  K. Wilson,et al.  Structure of the intact transactivation domain of the human papillomavirus E2 protein , 2000, Nature.

[166]  A. Poddar,et al.  The Human Papillomavirus Type 8 E2 Tethering Protein Targets the Ribosomal DNA Loci of Host Mitotic Chromosomes , 2008, Journal of Virology.

[167]  M. Yaniv,et al.  A dimer of BPV‐1 E2 containing a protease resistant core interacts with its DNA target. , 1988, The EMBO journal.

[168]  I. Ilves,et al.  Analysis of Chromatin Attachment and Partitioning Functions of Bovine Papillomavirus Type 1 E2 Protein , 2004, Journal of Virology.

[169]  S. Srimatkandada,et al.  High and Low Levels of Cottontail Rabbit Papillomavirus E2 Protein Generate Opposite Effects on Gene Expression* , 2001, The Journal of Biological Chemistry.

[170]  C. Demeret,et al.  Nucleo-cytoplasmic Shuttling of High Risk Human Papillomavirus E2 Proteins Induces Apoptosis* , 2005, Journal of Biological Chemistry.

[171]  L. Banks,et al.  Crosstalk between the human papillomavirus E2 transcriptional activator and the E6 oncoprotein , 2005, Oncogene.

[172]  S. Graham,et al.  Human Papillomavirus Type 16 E2 Protein Transcriptionally Activates the Promoter of a Key Cellular Splicing Factor, SF2/ASF , 2008, Journal of Virology.

[173]  K. Ozato,et al.  Interaction of Bovine Papillomavirus E2 Protein with Brd4 Stabilizes Its Association with Chromatin , 2005, Journal of Virology.

[174]  F. Stubenrauch,et al.  Low-affinity E2-binding site mediates downmodulation of E2 transactivation of the human papillomavirus type 8 late promoter , 1994, Journal of virology.

[175]  P. Howley,et al.  Inhibition of E2 Binding to Brd4 Enhances Viral Genome Loss and Phenotypic Reversion of Bovine Papillomavirus-Transformed Cells , 2005, Journal of Virology.

[176]  M. Botchan,et al.  Crystal structure of the human papillomavirus type 18 E2 activation domain. , 1999, Science.

[177]  E. Androphy,et al.  Interaction of Papillomavirus E2 Protein with the Brm Chromatin Remodeling Complex Leads to Enhanced Transcriptional Activation , 2006, Journal of Virology.

[178]  T. Iftner,et al.  Papillomavirus E2 protein induces expression of the matrix metalloproteinase-9 via the extracellular signal-regulated kinase/activator protein-1 signaling pathway. , 2005, Cancer research.

[179]  P. Howley,et al.  Interaction of the Bovine Papillomavirus E2 Protein with Brd4 Tethers the Viral DNA to Host Mitotic Chromosomes , 2004, Cell.

[180]  E. Garrido,et al.  HPV16 E2 could act as down-regulator in cellular genes implicated in apoptosis, proliferation and cell differentiation , 2011, Virology Journal.

[181]  M. Yaniv,et al.  Expression of the papillomavirus E2 protein in HeLa cells leads to apoptosis , 1997, The EMBO journal.

[182]  M. Ustav,et al.  Characterization of the Functional Activities of the Bovine Papillomavirus Type 1 E2 Protein Single-Chain Heterodimers , 2006, Journal of Virology.

[183]  J. Choe,et al.  cAMP Response Element-binding Protein-binding Protein Binds to Human Papillomavirus E2 Protein and Activates E2-dependent Transcription* , 2000, The Journal of Biological Chemistry.

[184]  M. Botchan,et al.  The E2 transactivator of bovine papillomavirus type 1 is expressed from multiple promoters , 1990, Journal of virology.

[185]  Alison A. McBride,et al.  Casein Kinase II Phosphorylation-induced Conformational Switch Triggers Degradation of the Papillomavirus E2 Protein* , 2004, Journal of Biological Chemistry.

[186]  Diana E Wetzler,et al.  Molecular basis for phosphorylation-dependent, PEST-mediated protein turnover. , 2006, Structure.

[187]  Shwu‐Yuan Wu,et al.  Brd4 links chromatin targeting to HPV transcriptional silencing. , 2006, Genes & development.

[188]  T. R. Broker,et al.  Remodeling of the human papillomavirus type 11 replication origin into discrete nucleoprotein particles and looped structures by the E2 protein. , 2008, Journal of molecular biology.

[189]  A. García-Carrancá,et al.  Transcription-independent triggering of the extrinsic pathway of apoptosis by human papillomavirus 18 E2 protein , 2003, Oncogene.

[190]  M. Remm,et al.  Identification and Analysis of Papillomavirus E2 Protein Binding Sites in the Human Genome , 2011, Journal of Virology.

[191]  H. Pfister,et al.  Interaction of Human Papillomavirus 8 Regulatory Proteins E2, E6 and E7 with Components of the TFIID Complex , 1998, Intervirology.

[192]  A. Kowalczyk,et al.  p53 represses human papillomavirus type 16 DNA replication via the viral E2 protein , 2008, Virology Journal.

[193]  D. Pim,et al.  HPV‐16 E2 contributes to induction of HPV‐16 late gene expression by inhibiting early polyadenylation , 2012, The EMBO journal.

[194]  A. Stenlund,et al.  Stenlund ATPase and DNA Helicase Activities DNA-Dependent Hexameric Complex with The Papillomavirus E 1 Protein Forms a , 1998 .

[195]  A. McBride,et al.  Conditional Mutations in the Mitotic Chromosome Binding Function of the Bovine Papillomavirus Type 1 E2 Protein , 2005, Journal of Virology.

[196]  C. M. Sanders,et al.  Mechanism and Requirements for Bovine Papillomavirus, Type 1, E1 Initiator Complex Assembly Promoted by the E2 Transcription Factor Bound to Distal Sites* , 2001, The Journal of Biological Chemistry.

[197]  R. K. Vempati DNA damage in the presence of chemical genotoxic agents induce acetylation of H3K56 and H4K16 but not H3K9 in mammalian cells , 2011, Molecular Biology Reports.

[198]  E. Garrido,et al.  TAF1 Interacts with and Modulates Human Papillomavirus 16 E2-Dependent Transcriptional Regulation , 2008, Intervirology.

[199]  M. Botchan,et al.  Genetic analysis of the activation domain of bovine papillomavirus protein E2: its role in transcription and replication , 1996, Journal of virology.

[200]  Jennifer A. Smith,et al.  Genome-wide siRNA screen identifies SMCX, EP400, and Brd4 as E2-dependent regulators of human papillomavirus oncogene expression , 2010, Proceedings of the National Academy of Sciences.

[201]  B. Akgül,et al.  The human papillomavirus type 8 E2 protein induces skin tumors in transgenic mice. , 2008, The Journal of investigative dermatology.

[202]  J. Choe,et al.  Functional Interaction between p/CAF and Human Papillomavirus E2 Protein* , 2002, The Journal of Biological Chemistry.

[203]  P. Fuchs,et al.  Transcriptional silencer of the human papillomavirus type 8 late promoter interacts alternatively with the viral trans activator E2 or with a cellular factor , 1994, Journal of virology.

[204]  M. Botchan,et al.  Bovine papillomavirus type 1 encodes two forms of a transcriptional repressor: structural and functional analysis of new viral cDNAs , 1989, Journal of virology.

[205]  Shwu‐Yuan Wu,et al.  Alleviation of Human Papillomavirus E2-Mediated Transcriptional Repression via Formation of a TATA Binding Protein (or TFIID)-TFIIB-RNA Polymerase II-TFIIF Preinitiation Complex , 2000, Molecular and Cellular Biology.

[206]  S. Grossman,et al.  Crystal structure at 1.7 Å of the bovine papillomavirus-1 E2 DMA-binding domain bound to its DNA target , 1992, Nature.

[207]  A. Antson,et al.  Transcription activator structure reveals redox control of a replication initiation reaction† , 2007, Nucleic acids research.

[208]  Wesley H. Stepp,et al.  Hitchhiking on host chromatin: how papillomaviruses persist. , 2012, Biochimica et biophysica acta.

[209]  P. He,et al.  The Human Papillomavirus Type 18 E2 Protein Is a Cell Cycle-Dependent Target of the SCFSkp2 Ubiquitin Ligase , 2009, Journal of Virology.

[210]  P. Howley,et al.  Bovine papillomavirus with a mutation in the E2 serine 301 phosphorylation site replicates at a high copy number , 1991, Journal of virology.

[211]  Yan Hu,et al.  Papillomavirus E2 protein interacts with and stimulates human topoisomerase I. , 2006, Virology.

[212]  T. R. Broker,et al.  Regulation of human papillomavirus type 11 enhancer and E6 promoter by activating and repressing proteins from the E2 open reading frame: functional and biochemical studies , 1988, Journal of virology.

[213]  E. Androphy,et al.  Tax1BP1 Interacts with Papillomavirus E2 and Regulates E2-Dependent Transcription and Stability , 2008, Journal of Virology.

[214]  K. Gaston,et al.  Comprehensive comparison of the interaction of the E2 master regulator with its cognate target DNA sites in 73 human papillomavirus types by sequence statistics , 2007, Nucleic acids research.

[215]  M. Yaniv,et al.  The human papillomavirus type 18 (HPV18) E2 gene product is a repressor of the HPV18 regulatory region in human keratinocytes , 1989, Journal of virology.

[216]  N. Bastien,et al.  Interaction of the papillomavirus E2 protein with mitotic chromosomes. , 2000, Virology.

[217]  R. Mitra,et al.  Brd4 Is Required for E2-Mediated Transcriptional Activation but Not Genome Partitioning of All Papillomaviruses , 2006, Journal of Virology.

[218]  V. Madrid-Marina,et al.  IL-10 expression is regulated by HPV E2 protein in cervical cancer cells. , 2011, Molecular medicine reports.

[219]  Shwu‐Yuan Wu,et al.  Dynamic Localization of the Human Papillomavirus Type 11 Origin Binding Protein E2 through Mitosis While in Association with the Spindle Apparatus , 2006, Journal of Virology.

[220]  S. Pastore,et al.  The role of redox regulation in the normal physiology and inflammatory diseases of skin. , 2009, Frontiers in bioscience.

[221]  A. Stenlund,et al.  Two Patches of Amino Acids on the E2 DNA Binding Domain Define the Surface for Interaction with E1 , 2000, Journal of Virology.

[222]  C. Chiang,et al.  Chromatin Adaptor Brd4 Modulates E2 Transcription Activity and Protein Stability* , 2009, Journal of Biological Chemistry.

[223]  Y. Jacob,et al.  Large Scale Genotype Comparison of Human Papillomavirus E2-Host Interaction Networks Provides New Insights for E2 Molecular Functions , 2012, PLoS pathogens.

[224]  K. Ozato,et al.  The Mitotic Chromosome Binding Activity of the Papillomavirus E2 Protein Correlates with Interaction with the Cellular Chromosomal Protein, Brd4 , 2005, Journal of Virology.

[225]  P. Howley,et al.  A transcriptional repressor encoded by BPV-1 shares a common carboxy-terminal domain with the E2 transactivator , 1987, Cell.

[226]  J. Dillner,et al.  Structural analysis of the human papillomavirus type 16-E2 transactivator with antipeptide antibodies reveals a high mobility region linking the transactivation and the DNA-binding domains. , 1991, Nucleic acids research.

[227]  M. Botchan,et al.  Structure of the papillomavirus DNA-tethering complex E2:Brd4 and a peptide that ablates HPV chromosomal association. , 2006, Molecular cell.

[228]  M. Botchan,et al.  Specific recognition nucleotides and their DNA context determine the affinity of E2 protein for 17 binding sites in the BPV-1 genome. , 1989, Genes & development.

[229]  P. Howley,et al.  Characterization of the cis elements involved in basal and E2-transactivated expression of the bovine papillomavirus P2443 promoter , 1991, Journal of virology.

[230]  A. Stenlund,et al.  Characterization of the DNA-Binding Domain of the Bovine Papillomavirus Replication Initiator E1 , 1998, Journal of Virology.

[231]  R. Schlegel,et al.  The carboxy‐terminal domain shared by the bovine papillomavirus E2 transactivator and repressor proteins contains a specific DNA binding activity. , 1988, The EMBO journal.

[232]  H. Bernard,et al.  The human papillomavirus type 16 E2 transcription factor binds with low cooperativity to two flanking sites and represses the E6 promoter through displacement of Sp1 and TFIID , 1994, Journal of virology.

[233]  A. Clarke,et al.  CpG methylation directly inhibits binding of the human papillomavirus type 16 E2 protein to specific DNA sequences , 1996, Journal of virology.

[234]  F. Kisseljov,et al.  Regulation of matrix metalloproteinase-9 transcription in squamous cell carcinoma of uterine cervix: the role of human papillomavirus gene E2 expression and activation of transcription factor NF-κB , 2007, Biochemistry (Moscow).

[235]  Yong Wang,et al.  Crystal Structure of the E2 Transactivation Domain of Human Papillomavirus Type 11 Bound to a Protein Interaction Inhibitor* , 2004, Journal of Biological Chemistry.

[236]  E. Androphy,et al.  The BPV-1 E2 DNA-contact helix cysteine is required for transcriptional activation but not replication in mammalian cells. , 1996, Virology.

[237]  H. Bernard,et al.  Conserved Methylation Patterns of Human Papillomavirus Type 16 DNA in Asymptomatic Infection and Cervical Neoplasia , 2004, Journal of Virology.

[238]  L. Chow,et al.  Human papillomavirus type 11 E2 proteins repress the homologous E6 promoter by interfering with the binding of host transcription factors to adjacent elements , 1994, Journal of virology.

[239]  E. Androphy,et al.  Mechanism of action of the papillomavirus E2 repressor: repression in the absence of DNA binding , 1992, Journal of virology.

[240]  F. Thierry,et al.  Tumor suppressor or oncogene? A critical role of the human papillomavirus (HPV) E2 protein in cervical cancer progression. , 2011, American journal of cancer research.

[241]  P. Winokur,et al.  The transactivation and DNA binding domains of the BPV-1 E2 protein have different roles in cooperative origin binding with the E1 protein. , 1996, Virology.

[242]  P. Stern,et al.  The Human Papillomavirus (HPV) 16 E2 Protein Induces Apoptosis in the Absence of Other HPV Proteins and via a p53-dependent Pathway* , 2000, The Journal of Biological Chemistry.

[243]  M. Botchan,et al.  Targeting the E1 replication protein to the papillomavirus origin of replication by complex formation with the E2 transactivator. , 1990, Science.

[244]  G. Steger,et al.  Dose-dependent regulation of the early promoter of human papillomavirus type 18 by the viral E2 protein , 1997, Journal of virology.

[245]  1H, 15N, and 13C NMR resonance assignments for the DNA-binding domain of the BPV-1 E2 protein , 1998, Journal of biomolecular NMR.

[246]  A. McBride,et al.  Amino acids critical for the functions of the bovine papillomavirus type 1 E2 transactivator , 1996, Journal of virology.

[247]  M. Sapp,et al.  Domains of the E1 protein of human papillomavirus type 33 involved in binding to the E2 protein. , 1996, Virology.

[248]  J. Archambault,et al.  Genetic analysis of the E2 transactivation domain dimerization interface from bovine papillomavirus type 1. , 2013, Virology.

[249]  S. Schuck,et al.  Assembly of a double hexameric helicase. , 2005, Molecular cell.

[250]  E. Androphy,et al.  Genetic analysis of the bovine papillomavirus E2 transcriptional activation domain. , 1996, Virology.

[251]  P. Howley,et al.  Functional analysis of E2-mediated repression of the HPV18 P105 promoter. , 1991, The New biologist.

[252]  J. R. Morris,et al.  Expression patterns of the human papillomavirus type 16 transcription factor E2 in low‐ and high‐grade cervical intraepithelial neoplasia , 1998, The Journal of pathology.

[253]  I. Frazer,et al.  BPV1 E2 protein enhances packaging of full-length plasmid DNA in BPV1 pseudovirions. , 2000, Virology.

[254]  M. Ozbun,et al.  Human papillomavirus type 31b E1 and E2 transcript expression correlates with vegetative viral genome amplification. , 1998, Virology.

[255]  M. Schapira,et al.  Subunit rearrangement accompanies sequence-specific DNA binding by the bovine papillomavirus-1 E2 protein. , 1998, Journal of molecular biology.

[256]  E. Androphy,et al.  Amino acids necessary for DNA contact and dimerization imply novel motifs in the papillomavirus E2 trans-activator. , 1992, Genes & development.

[257]  L. Banks,et al.  Regulation of Human Papillomavirus Type 16 E7 Activity through Direct Protein Interaction with the E2 Transcriptional Activator , 2006, Journal of Virology.

[258]  Cary A Moody,et al.  Human Papillomaviruses Recruit Cellular DNA Repair and Homologous Recombination Factors to Viral Replication Centers , 2012, Journal of Virology.

[259]  R. Everett,et al.  Human papillomavirus 16 L2 inhibits the transcriptional activation function, but not the DNA replication function, of HPV-16 E2. , 2005, Virus research.

[260]  A. McBride,et al.  The bovine papillomavirus type 1 E2 transactivator and repressor proteins use different nuclear localization signals , 1996, Journal of virology.

[261]  M. Ustav,et al.  Association of Bovine Papillomavirus E2 Protein with Nuclear Structures In Vivo , 2005, Journal of Virology.

[262]  M. von Knebel Doeberitz,et al.  Differential methylation of E2 binding sites in episomal and integrated HPV 16 genomes in preinvasive and invasive cervical lesions , 2013, International journal of cancer.

[263]  A. Clarke,et al.  The recognition of local DNA conformation by the human papillomavirus type 6 E2 protein , 2006, Nucleic acids research.

[264]  C. Johansson,et al.  Regulation of human papillomavirus gene expression by splicing and polyadenylation , 2013, Nature Reviews Microbiology.

[265]  M. Donaldson,et al.  TopBP1 Regulates Human Papillomavirus Type 16 E2 Interaction with Chromatin , 2007, Journal of Virology.

[266]  B. Akgül,et al.  Expression of matrix metalloproteinase (MMP)‐2, MMP‐9, MMP‐13, and MT1‐MMP in skin tumors of human papillomavirus type 8 transgenic mice , 2006, Experimental dermatology.

[267]  J. Moroianu,et al.  Characterization of the nuclear localization signal of high risk HPV16 E2 protein. , 2007, Virology.

[268]  D. Lowy,et al.  The Papillomavirus Minor Capsid Protein, L2, Induces Localization of the Major Capsid Protein, L1, and the Viral Transcription/Replication Protein, E2, to PML Oncogenic Domains , 1998, Journal of Virology.

[269]  M. Ustav,et al.  Transcriptional and replicational activation functions in the bovine papillomavirus type 1 E2 protein are encoded by different structural determinants , 1996, Journal of virology.

[270]  T. R. Broker,et al.  An E1M--E2C fusion protein encoded by human papillomavirus type 11 is asequence-specific transcription repressor , 1991, Journal of virology.

[271]  P. Lambert,et al.  Methylation Patterns of Papillomavirus DNA, Its Influence on E2 Function, and Implications in Viral Infection , 2003, Journal of Virology.

[272]  M. Braun,et al.  Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines , 1987, Journal of virology.

[273]  Wolfgang Mayer,et al.  Structure and transcription of human papillomavirus sequences in cervical carcinoma cells , 1985, Nature.

[274]  Y. Tsao,et al.  NRIP, a Novel Calmodulin Binding Protein, Activates Calcineurin To Dephosphorylate Human Papillomavirus E2 Protein , 2011, Journal of Virology.

[275]  M. Ustav,et al.  The bovine papillomavirus origin of replication requires a binding site for the E2 transcriptional activator. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[276]  C. Lorson,et al.  Identification of survival motor neuron as a transcriptional activator-binding protein. , 1999, Human molecular genetics.

[277]  C. Demeret,et al.  Stability of the Human Papillomavirus Type 18 E2 Protein Is Regulated by a Proteasome Degradation Pathway through Its Amino-Terminal Transactivation Domain , 2001, Journal of Virology.

[278]  A. McBride,et al.  Proteasome-Mediated Degradation of the Papillomavirus E2-TA Protein Is Regulated by Phosphorylation and Can Modulate Viral Genome Copy Number , 2000, Journal of Virology.

[279]  P. Howley,et al.  Mutational analysis of cis elements involved in E2 modulation of human papillomavirus type 16 P97 and type 18 P105 promoters , 1990, Journal of virology.

[280]  D. Lowy,et al.  Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[281]  Y. Tsao,et al.  NRIP enhances HPV gene expression via interaction with either GR or E2. , 2012, Virology.

[282]  Shih-Ming Huang,et al.  Human papillomavirus E2 protein associates with nuclear receptors to stimulate nuclear receptor- and E2-dependent transcriptional activations in human cervical carcinoma cells. , 2007, The international journal of biochemistry & cell biology.