Snap-back repellers in non-smooth functions

In this work we consider the homoclinic bifurcations of expanding periodic points. After Marotto, when homoclinic orbits to expanding periodic points exist, the points are called snap-back-repellers. Several proofs of the existence of chaotic sets associated with such homoclinic orbits have been given in the last three decades. Here we propose a more general formulation of Marotto’s theorem, relaxing the assumption of smoothness, considering a generic piecewise smooth function, continuous or discontinuous. An example with a two-dimensional smooth map is given and one with a two-dimensional piecewise linear discontinuous map.

[1]  George David Birkhoff The collected mathematical papers , 1909 .

[2]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[3]  L. P. Šil'nikov,et al.  A CONTRIBUTION TO THE PROBLEM OF THE STRUCTURE OF AN EXTENDED NEIGHBORHOOD OF A ROUGH EQUILIBRIUM STATE OF SADDLE-FOCUS TYPE , 1970 .

[4]  L. P. Šil'nikov,et al.  ON THREE-DIMENSIONAL DYNAMICAL SYSTEMS CLOSE TO SYSTEMS WITH A STRUCTURALLY UNSTABLE HOMOCLINIC CURVE. II , 1972 .

[5]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[6]  D. Saari,et al.  Stable and Random Motions in Dynamical Systems , 1975 .

[7]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[8]  R. Abraham,et al.  Foundations of mechanics : a mathematical exposition of classical mechanics with an introduction to the qualitative theory of dynamical systems and applications to the three-body problem , 1978 .

[9]  F. R. Marotto Snap-back repellers imply chaos in Rn , 1978 .

[10]  Stephen Smale The Mathematics of Time: Essays on Dynamical Systems, Economic Processes, and Related Topics , 1980 .

[11]  Stephen Smale,et al.  The mathematics of time , 1980 .

[12]  J. Yorke,et al.  Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .

[13]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[14]  R. Z. Sagdeev,et al.  Nonlinear and Turbulent Processes in Physics , 1984 .

[15]  R. Devaney An Introduction to Chaotic Dynamical Systems , 1990 .

[16]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[17]  Stephen Wiggins,et al.  Global Bifurcations and Chaos , 1988 .

[18]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[19]  Floris Takens,et al.  Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations : fractal dimensions and infinitely many attractors , 1993 .

[20]  W. D. Melo,et al.  ONE-DIMENSIONAL DYNAMICS , 2013 .

[21]  Laura Gardini,et al.  Homoclinic bifurcations in n -dimensional endomorphisms, due to expanding periodic points , 1994 .

[22]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[23]  L. Shilnikov,et al.  Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits. , 1996, Chaos.

[24]  Leonid P Shilnikov Mathematical Problems of Nonlinear Dynamics: A Tutorial , 1997 .

[25]  L. Chua,et al.  Methods of qualitative theory in nonlinear dynamics , 1998 .

[26]  Leon O. Chua,et al.  STRUCTURALLY STABLE SYSTEMS , 2001 .

[27]  Changpin Li,et al.  An improved version of the Marotto Theorem , 2003 .

[28]  Erratum to ``An improved version of the Marotto theorem'' [Chaos, Solitons and Fractals 18 (2003) 69-77] , 2004 .

[29]  Yuri A. Kuznetsov,et al.  Generalized Hénon Map and Bifurcations of Homoclinic Tangencies , 2005, SIAM J. Appl. Dyn. Syst..

[30]  F. R. Marotto On redefining a snap-back repeller , 2005 .

[31]  D. Turaev,et al.  On dynamic properties of diffeomorphisms with homoclinic tangency , 2005 .

[32]  SERGEY GONCHENKO,et al.  Generalized HÉnon Maps and Smale Horseshoes of New Types , 2008, Int. J. Bifurc. Chaos.

[33]  Laura Gardini,et al.  Center bifurcation for Two-Dimensional Border-Collision Normal Form , 2008, Int. J. Bifurc. Chaos.

[34]  Border collision bifurcations, snap-back repellers, and chaos. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.