Three-valued logic in bounded model checking

In principle, bounded model checking (BMC) leads to semi-decision procedures that can be used to verify liveness properties and to falsify safety properties. If the procedures fail, there is usually no information about the validity of the considered specification. In this paper, we present a new approach to BMC based on three-valued logic that allows us in many cases to falsify liveness properties and to verify safety properties. Moreover, we employ both global and local model checking to take advantage of the different types of specifications that can be handled by these techniques.

[1]  Klaus Schneider,et al.  Verification of Reactive Systems: Formal Methods and Algorithms , 2003 .

[2]  Stephan Merz,et al.  Model Checking , 2000 .

[3]  Armin Biere,et al.  Bounded Model Checking Using Satisfiability Solving , 2001, Formal Methods Syst. Des..

[4]  Tobias Schüle,et al.  Causality analysis of synchronous programs with delayed actions , 2004, CASES '04.

[5]  Tobias Schüle,et al.  Global vs. local model checking: a comparison of verification techniques for infinite state systems , 2004, Proceedings of the Second International Conference on Software Engineering and Formal Methods, 2004. SEFM 2004..

[6]  Carl-Johan H. Seger,et al.  Asynchronous Circuits , 1995, Monographs in Computer Science.

[7]  Thomas Kropf,et al.  Alternative Proof Procedures for Finite-State Machines in Higher-Order Logic , 1993, HUG.

[8]  Reinhard Wilhelm,et al.  Cache Behavior Prediction by Abstract Interpretation , 1996, Sci. Comput. Program..

[9]  Tevfik Bultan,et al.  Automata-based representations for arithmetic constraints in automated verification , 2002, CIAA'02.

[10]  Gérard Berry,et al.  The constructive semantics of pure esterel , 1996 .

[11]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[12]  Julian Bradfield Verifying Temporal Properties of Systems , 1992, Progress in Theoretical Computer Science.

[13]  A. Sangiovanni-Vincentelli,et al.  Formal analysis of synchronous circuits , 1996 .

[14]  Joël Ouaknine,et al.  Completeness and Complexity of Bounded Model Checking , 2004, VMCAI.

[15]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[16]  Melvin Fitting,et al.  Tableaus for many-valued modal logic , 1995, Stud Logica.

[17]  Marcus Nilsson,et al.  Regular Model Checking , 2000, CAV.

[18]  Niklas Sörensson,et al.  Temporal induction by incremental SAT solving , 2003, BMC@CAV.

[19]  Melvin Fitting,et al.  Many-valued modal logics , 1991, Fundam. Informaticae.

[20]  Christoph Meinel,et al.  Algorithms and Data Structures in VLSI Design: OBDD - Foundations and Applications , 2012 .

[21]  Colin Stirling,et al.  Local Model Checking for Infinite State Spaces , 1992, Theor. Comput. Sci..

[22]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[23]  Anamaria Martins Moreira,et al.  Using induction and BDDs to model check invariants , 1997, CHARME.

[24]  Tobias Schüle,et al.  Bounded model checking of infinite state systems: exploiting the automata hierarchy , 2004, Proceedings. Second ACM and IEEE International Conference on Formal Methods and Models for Co-Design, 2004. MEMOCODE '04..

[25]  Radha Jagadeesan,et al.  Model checking partial state spaces with 3-valued temporal logics , 2001 .

[26]  Melvin Fitting,et al.  Many-valued modal logics II , 1992 .

[27]  Mary Sheeran,et al.  Checking Safety Properties Using Induction and a SAT-Solver , 2000, FMCAD.

[28]  Rance Cleaveland,et al.  Tableau-based model checking in the propositional mu-calculus , 1990, Acta Informatica.

[29]  Sharad Malik Analysis of cyclic combinational circuits , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[30]  Tobias Schüle,et al.  Maximal causality analysis , 2005, Fifth International Conference on Application of Concurrency to System Design (ACSD'05).

[31]  Marsha Chechik,et al.  Multi-valued symbolic model-checking , 2003, TSEM.

[32]  David Walker,et al.  Local Model Checking in the Modal mu-Calculus , 1991, Theoretical Computer Science.

[33]  E. Clarke,et al.  Symbolic model checking using SAT procedures instead of BDDs , 1999, Proceedings 1999 Design Automation Conference (Cat. No. 99CH36361).

[34]  Harald Ruess,et al.  Bounded Model Checking and Induction: From Refutation to Verification (Extended Abstract, Category A) , 2003, CAV.

[35]  Pierre Wolper,et al.  Iterating Transducers in the Large (Extended Abstract) , 2003, CAV.

[36]  Kenneth L. McMillan,et al.  Interpolation and SAT-Based Model Checking , 2003, CAV.

[37]  Klaus Schneider,et al.  Improving Constructiveness in Code Generators , 2005 .