The influence of response conflict on error processing: Evidence from event-related fMRI

[1]  J. R. Simon,et al.  Reactions toward the source of stimulation. , 1969, Journal of experimental psychology.

[2]  V. B. Brooks,et al.  ‘Error’ potentials in limbic cortex (anterior cingulate area 24) of monkeys during motor learning , 1986, Neuroscience Letters.

[3]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[4]  C. Olson,et al.  Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. , 1992, Cerebral cortex.

[5]  J. Mazziotta,et al.  Brain-behavior relationships: evidence from practice effects in spatial stimulus-response compatibility. , 1996, Journal of neurophysiology.

[6]  Alan C. Evans,et al.  Human cingulate and paracingulate sulci: pattern, variability, asymmetry, and probabilistic map. , 1996, Cerebral cortex.

[7]  M. Bushnell,et al.  Pain affect encoded in human anterior cingulate but not somatosensory cortex. , 1997, Science.

[8]  M. Botvinick,et al.  Anterior cingulate cortex, error detection, and the online monitoring of performance. , 1998, Science.

[9]  George Bush,et al.  The emotional counting stroop paradigm: a functional magnetic resonance imaging probe of the anterior cingulate affective division , 1998, Biological Psychiatry.

[10]  J. Duncan,et al.  Common regions of the human frontal lobe recruited by diverse cognitive demands , 2000, Trends in Neurosciences.

[11]  J L Lancaster,et al.  Automated Talairach Atlas labels for functional brain mapping , 2000, Human brain mapping.

[12]  J. Cohen,et al.  Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. , 2000, Science.

[13]  K. Kiehl,et al.  Error processing and the rostral anterior cingulate: an event-related fMRI study. , 2000, Psychophysiology.

[14]  R. Peyron,et al.  Functional imaging of brain responses to pain. A review and meta-analysis (2000) , 2000, Neurophysiologie Clinique/Clinical Neurophysiology.

[15]  M. Posner,et al.  Cognitive and emotional influences in anterior cingulate cortex , 2000, Trends in Cognitive Sciences.

[16]  M. Botvinick,et al.  Conflict monitoring and cognitive control. , 2001, Psychological review.

[17]  M. Buonocore,et al.  Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval , 2001, Neuroscience.

[18]  D. V. Cramon,et al.  Subprocesses of Performance Monitoring: A Dissociation of Error Processing and Response Competition Revealed by Event-Related fMRI and ERPs , 2001, NeuroImage.

[19]  P. Strick,et al.  Imaging the premotor areas , 2001, Current Opinion in Neurobiology.

[20]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[21]  G. Glover,et al.  Error‐related brain activation during a Go/NoGo response inhibition task , 2001, Human brain mapping.

[22]  P. Maruff,et al.  Hemispheric and gender-related differences in the gross morphology of the anterior cingulate/paracingulate cortex in normal volunteers: an MRI morphometric study. , 2001, Cerebral cortex.

[23]  M Herrmann,et al.  Control of semantic interference in episodic memory retrieval is associated with an anterior cingulate‐prefrontal activation pattern , 2001, Human brain mapping.

[24]  A. Dale,et al.  Dorsal anterior cingulate cortex: A role in reward-based decision making , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  T. Braver,et al.  Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. , 2001, Cerebral cortex.

[26]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[27]  C. Carter,et al.  The Timing of Action-Monitoring Processes in the Anterior Cingulate Cortex , 2002, Journal of Cognitive Neuroscience.

[28]  Clay B. Holroyd,et al.  The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. , 2002, Psychological review.

[29]  R. Davidson,et al.  Depression: perspectives from affective neuroscience. , 2002, Annual review of psychology.

[30]  W. Nager,et al.  Excessive action monitoring in Tourette syndrome , 2002, Journal of Neurology.

[31]  A. Turken,et al.  Dissociation between conflict detection and error monitoring in the human anterior cingulate cortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  B. Richmond,et al.  Anterior Cingulate: Single Neuronal Signals Related to Degree of Reward Expectancy , 2002, Science.

[33]  H. Garavan,et al.  Dissociable Executive Functions in the Dynamic Control of Behavior: Inhibition, Error Detection, and Correction , 2002, NeuroImage.

[34]  John C Gore,et al.  An event-related functional MRI study comparing interference effects in the Simon and Stroop tasks. , 2002, Brain research. Cognitive brain research.

[35]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[36]  K. Kiehl,et al.  Rostral anterior cingulate cortex dysfunction during error processing in schizophrenia. , 2003, Brain : a journal of neurology.

[37]  E. Awh,et al.  Conflict adaptation effects in the absence of executive control , 2003, Nature Neuroscience.

[38]  Jin Fan,et al.  Cognitive and Brain Consequences of Conflict , 2003, NeuroImage.

[39]  H Garavan,et al.  A midline dissociation between error-processing and response-conflict monitoring , 2003, NeuroImage.

[40]  G. Fink,et al.  Neural correlates of the first-person-perspective , 2003, Trends in Cognitive Sciences.

[41]  Joshua W. Brown,et al.  Performance Monitoring by the Anterior Cingulate Cortex During Saccade Countermanding , 2003, Science.

[42]  Katya Rubia,et al.  Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection , 2003, NeuroImage.

[43]  T. Robbins,et al.  A componential analysis of task-switching deficits associated with lesions of left and right frontal cortex. , 2004, Brain : a journal of neurology.

[44]  Hugh Garavan,et al.  Individual differences in error processing: a review and reanalysis of three event-related fMRI studies using the GO/NOGO task. , 2004, Cerebral cortex.

[45]  S. Segalowitz,et al.  Error detection in patients with lesions to the medial prefrontal cortex: an ERP study , 2004, Neuropsychologia.

[46]  H. Critchley The human cortex responds to an interoceptive challenge. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Dennis Velakoulis,et al.  Individual differences in anterior cingulate/paracingulate morphology are related to executive functions in healthy males. , 2004, Cerebral cortex.

[48]  F. Bermpohl,et al.  Cortical midline structures and the self , 2004, Trends in Cognitive Sciences.

[49]  K. Zilles,et al.  Neural Correlates of First-Person Perspective as One Constituent of Human Self-Consciousness , 2004, Journal of Cognitive Neuroscience.

[50]  Jonathan D. Cohen,et al.  Conflict monitoring and anterior cingulate cortex: an update , 2004, Trends in Cognitive Sciences.

[51]  Martin P Paulus,et al.  Functional subdivisions within anterior cingulate cortex and their relationship to autonomic nervous system function , 2004, NeuroImage.

[52]  K. R. Ridderinkhof,et al.  The Role of the Medial Frontal Cortex in Cognitive Control , 2004, Science.

[53]  Wolfgang Prinz,et al.  A Simon effect with stationary moving stimuli. , 2004, Journal of experimental psychology. Human perception and performance.

[54]  Xun Liu,et al.  Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI , 2004, NeuroImage.

[55]  John J. Foxe,et al.  A topography of executive functions and their interactions revealed by functional magnetic resonance imaging. , 2004, Brain research. Cognitive brain research.

[56]  H Garavan,et al.  Artifactual fMRI group and condition differences driven by performance confounds , 2004, NeuroImage.

[57]  Jonathan D. Cohen,et al.  The neural basis of error detection: conflict monitoring and the error-related negativity. , 2004, Psychological review.

[58]  D. Yves von Cramon,et al.  Neuroimaging of Performance Monitoring: Error Detection and Beyond , 2004, Cortex.

[59]  W. Gehring,et al.  Error-related hyperactivity of the anterior cingulate cortex in obsessive-compulsive disorder , 2005, Biological Psychiatry.

[60]  B. Vogt Pain and emotion interactions in subregions of the cingulate gyrus , 2005, Nature Reviews Neuroscience.

[61]  T. Egner,et al.  Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information , 2005, Nature Neuroscience.

[62]  Matthew S. Cain,et al.  Rostral and dorsal anterior cingulate cortex make dissociable contributions during antisaccade error commission , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  I. Tracey Nociceptive processing in the human brain , 2005, Current Opinion in Neurobiology.

[64]  Joshua W. Brown,et al.  Learned Predictions of Error Likelihood in the Anterior Cingulate Cortex , 2005, Science.

[65]  Tor D. Wager,et al.  Common and unique components of response inhibition revealed by fMRI , 2005, NeuroImage.

[66]  Jonathan D. Cohen,et al.  Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. , 2005, The American journal of psychiatry.

[67]  Raymond J. Dolan,et al.  Anterior cingulate activity during error and autonomic response , 2005, NeuroImage.

[68]  Jesper Andersson,et al.  Valid conjunction inference with the minimum statistic , 2005, NeuroImage.

[69]  Tobias Egner,et al.  Intentional false responding shares neural substrates with response conflict and cognitive control , 2005, NeuroImage.

[70]  Erich O. Richter,et al.  Human Anterior Cingulate Cortex Neurons Encode Cognitive and Emotional Demands , 2005, The Journal of Neuroscience.

[71]  Thomas R. Knösche,et al.  Who Comes First? The Role of the Prefrontal and Parietal Cortex in Cognitive Control , 2005, Journal of Cognitive Neuroscience.

[72]  John J. Foxe,et al.  Neural mechanisms involved in error processing: A comparison of errors made with and without awareness , 2005, NeuroImage.

[73]  S V Medvedev,et al.  Error detection mechanisms of the brain: background and prospects. , 2005, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[74]  Manfred Herrmann,et al.  Comparison of two Simon tasks: Neuronal correlates of conflict resolution based on coherent motion perception , 2006, NeuroImage.

[75]  Ardi Roelofs,et al.  Anterior cingulate cortex activity can be independent of response conflict in Stroop-like tasks , 2006, Proceedings of the National Academy of Sciences.

[76]  Jonathan D. Cohen,et al.  Resting anterior cingulate activity and abnormal responses to errors in subjects with elevated depressive symptoms: A 128‐channel EEG study , 2006, Human brain mapping.

[77]  A. Cavanna,et al.  The precuneus: a review of its functional anatomy and behavioural correlates. , 2006, Brain : a journal of neurology.

[78]  E. Kandel,et al.  Resolving Emotional Conflict: A Role for the Rostral Anterior Cingulate Cortex in Modulating Activit , 2006 .

[79]  Kristina M. Visscher,et al.  A Core System for the Implementation of Task Sets , 2006, Neuron.

[80]  M. Boucart,et al.  The ventral premotor cortex (vPM) and resistance to interference. , 2006, Behavioral neuroscience.

[81]  Norbert Kathmann,et al.  Neural correlates of error awareness , 2007, NeuroImage.

[82]  Danielle C. Turner,et al.  Association Between Response Inhibition and Working Memory in Adult ADHD: A Link to Right Frontal Cortex Pathology? , 2007, Biological Psychiatry.