Communication Strength of Correlations Violating Monogamy Relations

In any theory satisfying the no-signaling principle correlations generated among spatially separated parties in a Bell-type experiment are subject to certain constraints known as monogamy relations. Recently, in the context of the black hole information loss problem it was suggested that these monogamy relations might be violated. This in turn implies that correlations arising in such a scenario must violate the no-signaling principle and hence can be used to send classical information between parties. Here, we study the amount of information that can be sent using such correlations. To this aim, we first provide a framework associating them with classical channels whose capacities are then used to quantify the usefulness of these correlations in sending information. Finally, we determine the minimal amount of information that can be sent using signaling correlations violating the monogamy relation associated to the chained Bell inequalities.

[1]  Jonathan Barrett Information processing in generalized probabilistic theories , 2005 .

[2]  A. Acín,et al.  Almost quantum correlations , 2014, Nature Communications.

[3]  M. Navascués,et al.  A glance beyond the quantum model , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[4]  N. Gisin,et al.  General properties of nonsignaling theories , 2005, quant-ph/0508016.

[5]  Roger Colbeck,et al.  Free randomness can be amplified , 2011, Nature Physics.

[6]  S. Wehner,et al.  Bell Nonlocality , 2013, 1303.2849.

[7]  A. Winter,et al.  Information causality as a physical principle , 2009, Nature.

[8]  J. Polchinski,et al.  Black holes: complementarity or firewalls? , 2012, Journal of High Energy Physics.

[9]  S. Braunstein,et al.  Wringing out better bell inequalities , 1990 .

[10]  Ravishankar Ramanathan,et al.  Strong monogamies of no-signaling violations for bipartite correlation bell inequalities. , 2014, Physical review letters.

[11]  M. Pawlowski,et al.  Elemental and tight monogamy relations in nonsignaling theories , 2013, 1307.6390.

[12]  H. S. Bansil,et al.  A search for prompt lepton-jets in pp collisions at s=8$$ \sqrt{\mathrm{s}}=8 $$ TeV with the ATLAS detector , 2016 .

[13]  T. Fritz,et al.  Local orthogonality as a multipartite principle for quantum correlations , 2012, Nature Communications.

[14]  Karol Horodecki,et al.  Realistic noise-tolerant randomness amplification using finite number of devices , 2016, Nature Communications.

[15]  M. Horodecki,et al.  Do black holes create polyamory? , 2015, Journal of High Energy Physics.

[16]  Rodrigo Gallego,et al.  Full randomness from arbitrarily deterministic events , 2012, Nature Communications.

[17]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[18]  B. Toner Monogamy of non-local quantum correlations , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  J. Oppenheim,et al.  Firewalls and flat mirrors: An alternative to the AMPS experiment which evades the Harlow-Hayden obstacle , 2014, 1401.1523.

[20]  G. L. Collected Papers , 1912, Nature.

[21]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[22]  M. Pawłowski,et al.  Monogamy of Bell's inequality violations in nonsignaling theories. , 2008, Physical Review Letters.

[23]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[24]  J. Preskill,et al.  Unitarity of black hole evaporation in final-state projection models , 2013, 1308.4209.

[25]  Claude E. Shannon,et al.  A mathematical theory of communication , 1948, MOCO.

[26]  J. Maldacena,et al.  The black hole final state , 2003, hep-th/0310281.

[27]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[28]  Ericka Stricklin-Parker,et al.  Ann , 2005 .