General relativistic models for rotating magnetized neutron stars in conformally flat space–time

The extraordinary energetic activity of magnetars is usually explained in terms of dissipation of a huge internal magnetic field of the order of $10^{15-16}$G. How such a strong magnetic field can originate during the formation of a neutron star is still subject of active research. An important role can be played by fast rotation: if magnetars are born as millisecond rotators dynamo mechanisms may efficiently amplify the magnetic field inherited from the progenitor star during the collapse. In this case, the combination of rapid rotation and strong magnetic field determine the right physical condition not only for the development of a powerful jet driven explosion, manifesting as a gamma ray burst, but also for a copious gravitational waves emission. Strong magnetic fields are indeed able to induce substantial quadrupolar deformations in the star. In this paper we analyze the joint effect of rotation and magnetization on the structure of a polytropic and axisymmetric neutron star, within the ideal magneto-hydrodynamic regime. We will consider either purely toroidal or purely poloidal magnetic field geometries. Through the sampling of a large parameter space, we generalize previous results in literature, inferring new quantitative relations that allow for a parametrization of the induced deformation, that takes into account also the effects due to the stellar compactness and the current distribution. Finally, in the case of purely poloidal field, we also discuss how different prescriptions on the surface charge distribution (a gauge freedom) modify the properties of the surrounding electrosphere and its physical implications.

[1]  N. Bucciantini,et al.  A fully covariant mean-field dynamo closure for numerical 3+1 resistive GRMHD , 2012, 1205.2951.

[2]  S. Landi,et al.  Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited , 2016, 1605.06331.

[3]  C. Ott,et al.  Rotating collapse of stellar iron cores in general relativity , 2006, astro-ph/0612638.

[4]  A. Tchekhovskoy,et al.  Time-dependent 3D magnetohydrodynamic pulsar magnetospheres: oblique rotators , 2012, 1211.2803.

[5]  Christopher Thompson,et al.  Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts , 1992 .

[6]  Eli Livne,et al.  The Spin Periods and Rotational Profiles of Neutron Stars at Birth , 2005, astro-ph/0508462.

[7]  B. Giacomazzo,et al.  PRODUCING MAGNETAR MAGNETIC FIELDS IN THE MERGER OF BINARY NEUTRON STARS , 2014, 1410.0013.

[8]  R. Perna,et al.  CONSTRAINING THE GRB-MAGNETAR MODEL BY MEANS OF THE GALACTIC PULSAR POPULATION , 2015, 1510.01430.

[9]  K. Kotake,et al.  Three-dimensional simulations of rapidly rotating core-collapse supernovae: finding a neutrino-powered explosion aided by non-axisymmetric flows , 2016, 1602.06759.

[10]  U. Geppert,et al.  The proto-neutron-star dynamo. Viability and impediments , 2005, astro-ph/0502277.

[11]  Astronomy,et al.  GRMHD in axisymmetric dynamical spacetimes: the X-ECHO code , 2010, 1010.3532.

[12]  On magnetic equilibria in barotropic stars , 2014, 1412.1524.

[13]  K. Glampedakis,et al.  The inside-out view on neutron-star magnetospheres , 2013, 1306.6881.

[14]  P. Haensel,et al.  Physics of Neutron Star Crusts , 2008, Living reviews in relativity.

[15]  D. Jones,et al.  Magnetic fields in axisymmetric neutron stars , 2009, 0903.0827.

[16]  V. Usov,et al.  Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts , 1992 .

[17]  A. Drago,et al.  Quark deconfinement in the proto-magnetar model of long gamma-ray bursts , 2016, 1606.02075.

[18]  R. Perna,et al.  Unifying the observational diversity of isolated neutron stars via magneto-thermal evolution models. , 2013, 1306.2156.

[19]  S. Yoshida,et al.  Axisymmetric and stationary structures of magnetized barotropic stars with extremely strong magnetic fields deep inside , 2012, 1204.5830.

[20]  K. Kiuchi,et al.  Relativistic stars with purely toroidal magnetic fields , 2008, 0802.2983.

[21]  L. Rezzolla,et al.  Equilibrium models of relativistic stars with a toroidal magnetic field , 2012, 1207.4035.

[22]  B. Metzger,et al.  The Proto-Magnetar Model for Gamma-Ray Bursts , 2010, 1012.0001.

[23]  A. Burrows,et al.  The birth of neutron stars , 1986 .

[24]  A. Tsokaros,et al.  Equilibrium solutions of relativistic rotating stars with mixed poloidal and toroidal magnetic fields , 2014, 1410.3913.

[25]  K. Glampedakis,et al.  Modelling magnetically deformed neutron stars , 2007, 0705.1780.

[26]  N. Langer,et al.  Instability of magnetic equilibria in barotropic stars , 2014, 1411.7252.

[27]  B. Dewitt,et al.  Black holes (Les astres occlus) , 1973 .

[28]  P. O’Brien,et al.  Constraining properties of GRB magnetar central engines using the observed plateau luminosity and duration correlation , 2014, 1407.1053.

[29]  Ralf S. Klessen,et al.  American Institute of Physics Conference Series , 2010 .

[30]  Quantum electrodynamical corrections to a magnetic dipole in general relativity , 2015, 1512.05805.

[31]  Eli Livne,et al.  Simulations of Magnetically Driven Supernova and Hypernova Explosions in the Context of Rapid Rotation , 2007 .

[32]  N. Bucciantini,et al.  Axisymmetric equilibrium models for magnetized neutron stars in General Relativity under the Conformally Flat Condition , 2014, 1401.4308.

[33]  A. Melatos,et al.  Magnetic Field Generation in Stars , 2015, Space Science Reviews.

[34]  L. Stella,et al.  Early evolution of newly born magnetars with a strong toroidal field , 2008, 0811.4311.

[35]  H. Zeipel,et al.  The Radiative Equilibrium of a Rotating System of Gaseous Masses , 1924 .

[36]  L. Rezzolla,et al.  Mean-field dynamo action in protoneutron stars , 2003, astro-ph/0309783.

[37]  Asaf Oron Relativistic magnetized star with poloidal and toroidal fields , 2002 .

[38]  M. Ruderman Pulsars: Structure and Dynamics , 1972 .

[39]  P. Lasky,et al.  Observationally constraining gravitational wave emission from short gamma-ray burst remnants , 2015, 1512.05368.

[40]  J. Font,et al.  Non-linear axisymmetric pulsations of rotating relativistic stars in the conformal flatness approximation , 2005, astro-ph/0511394.

[41]  Sathyawageeswar Subramanian,et al.  GRMHD formulation of highly super-Chandrasekhar rotating magnetized white dwarfs: stable configurations of non-spherical white dwarfs , 2015, 1507.01606.

[42]  N. Bucciantini,et al.  General relativistic neutron stars with twisted magnetosphere , 2014, 1412.4036.

[43]  Density-functional-theory calculations of matter in strong magnetic fields. I. Atoms and molecules , 2006, astro-ph/0607166.

[44]  S. Schramm,et al.  Internal composition of proto-neutron stars under strong magnetic fields , 2016, 1606.04843.

[45]  N. Bucciantini,et al.  The role of currents distribution in general relativistic equilibria of magnetized neutron stars , 2014, 1412.5347.

[46]  Miguel Alcubierre,et al.  Introduction to 3+1 Numerical Relativity , 2008 .

[47]  S. Schramm,et al.  Effects of strong magnetic fields and rotation on white dwarf structure , 2015, 1507.05557.

[48]  T. Tauris,et al.  Constraining the ellipticity of strongly magnetized neutron stars powering superluminous supernovae , 2016, 1604.03983.

[49]  K. Kotake,et al.  IMPACTS OF ROTATION ON THREE-DIMENSIONAL HYDRODYNAMICS OF CORE-COLLAPSE SUPERNOVAE , 2014, 1403.7290.

[50]  Shijun Yoshida,et al.  Equilibrium Configurations of Magnetized Rotating Polytropes: Effects of Strong Toroidal Magnetic Fields in Addition to Poloidal Magnetic Fields , 2006 .

[51]  O. Zanotti,et al.  ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics , 2007, 0704.3206.

[52]  Y. Sekiguchi,et al.  Magnetohydrodynamics in full general relativity: Formulation and tests , 2005, astro-ph/0507383.

[53]  Presupernova evolution of differentially rotating massive stars including magnetic fields , 2004, astro-ph/0409422.

[54]  D. Lai,et al.  Condensed surfaces of magnetic neutron stars, thermal surface emission, and particle acceleration above pulsar polar caps , 2007, 0708.3863.

[55]  P. Cerd'a-Dur'an,et al.  Efficient magnetic-field amplification due to the Kelvin-Helmholtz instability in binary neutron star mergers , 2015, 1509.09205.

[56]  Sung-Chul Yoon Evolutionary Models for Type Ib/c Supernova Progenitors , 2015, Publications of the Astronomical Society of Australia.

[57]  Grant J. Mathews,et al.  Relativistic Numerical Hydrodynamics , 2003 .

[58]  Relativistic structure, stability, and gravitational collapse of charged neutron stars , 2005, gr-qc/0510106.

[59]  D. Bhattacharya,et al.  Mass–radius relation of strongly magnetized white dwarfs: nearly independent of Landau quantization , 2014, 1405.2282.

[60]  P. Marchant,et al.  Stability of magnetic fields in non-barotropic stars: an analytic treatment , 2013, 1302.0273.

[61]  R. Ciolfi,et al.  Structure and deformations of strongly magnetized neutron stars with twisted torus configurations , 2010, 1003.2148.

[62]  A. Melatos,et al.  Neutron star deformation due to poloidal-toroidal magnetic fields of arbitrary multipole order: a new analytic approach , 2015, 1501.01134.

[63]  Modelling of isolated radio pulsars and magnetars on the fossil field hypothesis , 2006, astro-ph/0601258.

[64]  A. Melatos,et al.  Gravitational wave emission from a magnetically deformed non-barotropic neutron star , 2011, 1108.0219.

[65]  K. Ioka,et al.  Relativistic Stars with Poloidal and Toroidal Magnetic Fields and Meridional Flow , 2003, astro-ph/0305352.

[66]  Thomas W. Baumgarte,et al.  Numerical Relativity: Solving Einstein's Equations on the Computer , 2010 .

[67]  B. Carter Killing Horizons and Orthogonally Transitive Groups in Space‐Time , 1969 .

[68]  R. Tolman Static Solutions of Einstein's Field Equations for Spheres of Fluid , 1939 .

[69]  N. Langer,et al.  A VLT/FLAMES survey for massive binaries in Westerlund 1 - IV. Wd1-5 – binary product and a pre-supernova companion for the magnetar CXOU J1647-45? , 2014, 1405.3109.

[70]  R. Ciolfi,et al.  Relativistic models of magnetars: the twisted torus magnetic field configuration , 2009, 0903.0556.

[71]  Y. Eriguchi,et al.  Coexistence of oppositely flowing multi-φ currents: key to large toroidal magnetic fields within stars , 2013, 1304.0549.

[72]  F. Michel Rotating Magnetospheres: an Exact 3-D Solution , 1973 .

[73]  R. Ouyed,et al.  Quark Deconfinement in Neutron Star Cores: The Effects of Spin-down , 2006, astro-ph/0603743.

[74]  Erik Schnetter,et al.  A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae , 2015, Nature.

[75]  B. Metzger,et al.  Magnetized relativistic jets and long-duration GRBs from magnetar spin-down during core-collapse supernovae , 2009, 0901.3801.

[76]  Hui Li,et al.  Electrodynamics of neutron stars , 1999 .

[77]  Bending of spherical lithosphere?axisymmetric case , 1997 .

[78]  B. Carter The commutation property of a stationary, axisymmetric system , 1970 .

[79]  C. Fendt,et al.  The Axisymmetric Pulsar Magnetosphere , 1999, astro-ph/9903049.

[80]  D. Bhattacharya,et al.  Mass-radius relation of strongly magnetized white dwarfs: dependence on field geometry, GR effects and electrostatic corrections to the EOS , 2015, 1710.08689.

[81]  M. Ruiz,et al.  Pulsar spin-down luminosity: Simulations in general relativity , 2014, 1402.5412.

[82]  Y. Eriguchi,et al.  Appearance of the prolate and the toroidal magnetic field dominated stars - Analytic approach , 2015, 1504.00713.

[83]  L. Gualtieri,et al.  Spin evolution of a proto-neutron star , 2016, 1601.02945.

[84]  Waveless Approximation Theories of Gravity , 2007, gr-qc/0702113.

[85]  R. Ciolfi,et al.  Twisted-torus configurations with large toroidal magnetic fields in relativistic stars , 2013, 1306.2803.

[86]  Jorge Pullin Numerical Relativity: Solving Einstein’s Equations on the Computer , 2011 .

[87]  L. Woltjer A Magnetostatic Model for a Compressible Star. , 1960 .

[88]  A. Drago,et al.  Combustion of a hadronic star into a quark star: The turbulent and the diffusive regimes , 2015, 1506.08337.

[89]  A. Masiello,et al.  Recent Developments in General Relativity , 2000 .

[90]  B. Metzger,et al.  Short GRBs with Extended Emission from Magnetar Birth: Jet Formation and Collimation , 2011, 1106.4668.

[91]  S. Popov,et al.  Progenitors with enhanced rotation and the origin of magnetars , 2006 .

[92]  S. McMillan,et al.  A Neutron Star with a Massive Progenitor in Westerlund 1 , 2005, astro-ph/0509408.

[93]  Gravitational Waves from Neutron Stars with Large Toroidal B-fields , 2002, gr-qc/0206051.

[94]  A. Spitkovsky Time-dependent Force-free Pulsar Magnetospheres: Axisymmetric and Oblique Rotators , 2006, astro-ph/0603147.

[95]  J. Lattimer,et al.  Evolution of Proto-Neutron Stars , 1998, astro-ph/9807040.

[96]  K. Fujisawa,et al.  Magnetic field configurations of a magnetar throughout its interior and exterior - core, crust and magnetosphere , 2014, 1409.4547.

[97]  K. Fujisawa Magnetized stars with differential rotation and a differential toroidal field , 2015, 1504.05961.

[98]  D. Wickramasinghe,et al.  Origin and evolution of magnetars , 2008, 0807.2106.

[99]  D. Chatterjee,et al.  Consistent neutron star models with magnetic-field-dependent equations of state , 2014, 1410.6332.

[100]  J. Braithwaite Axisymmetric magnetic fields in stars: relative strengths of poloidal and toroidal components , 2008, 0810.1049.

[101]  P. Cerdá-Durán,et al.  Evolutionary sequences of rotating protoneutron stars , 2003, astro-ph/0310875.

[102]  Bernard F. Schutz,et al.  Living Reviews in Relativity: Making an Electronic Journal Live , 1997 .

[103]  A. Timokhin On the force‐free magnetosphere of an aligned rotator , 2005, astro-ph/0511817.

[104]  P. Lasky,et al.  Tilted torus magnetic fields in neutron stars and their gravitational wave signatures , 2013, 1310.7633.

[105]  R. Takahashi,et al.  Counter effects of meridional flows and magnetic fields in stationary axisymmetric self-gravitating barotropes under the ideal MHD approximation: clear examples – toroidal configurations , 2013, 1304.0548.

[106]  State of stress within a bending spherical shell and its implications for subducting lithosphere , 1998 .

[107]  W. Kundt,et al.  Orthogonal decomposition of axi-symmetric stationary spacetimes , 1966 .