Science exploration and instrumentation of the OKEANOS mission to a Jupiter Trojan asteroid using the solar power sail

Abstract An engineering mission OKEANOS to explore a Jupiter Trojan asteroid, using a Solar Power Sail is currently under study. After a decade-long cruise, it will rendezvous with the target asteroid, conduct global mapping of the asteroid from the spacecraft, and in situ measurements on the surface, using a lander. Science goals and enabling instruments of the mission are introduced, as the results of the joint study between the scientists and engineers from Japan and Europe.

[1]  R. Eberhardt,et al.  Thermal infrared spectrometer MERTIS for the BepiColumbo Mission to Mercury , 2017, International Conference on Space Optics.

[2]  Junichiro Kawaguchi,et al.  System Designing of Solar Power Sail-craft for Jupiter Trojan Asteroid Exploration , 2018 .

[3]  R. Rieder,et al.  The Rosetta Alpha Particle X-Ray Spectrometer (APXS) , 2007 .

[4]  Heinz-Wilhelm Hübers,et al.  Optimizing the detection of carotene in cyanobacteria in a martian regolith analogue with a Raman spectrometer for the ExoMars mission , 2012 .

[5]  Harold F. Levison,et al.  Contamination of the asteroid belt by primordial trans-Neptunian objects , 2009, Nature.

[6]  Bernard Marty The origins and concentrations of water, carbon, nitrogen and noble gases on Earth , 2012 .

[7]  Angioletta Coradini,et al.  JIRAM, the image spectrometer in the near infrared on board the Juno mission to Jupiter. , 2008, Astrobiology.

[8]  Michael E. Zolensky,et al.  The Tagish Lake Meteorite: A Possible Sample from a D-Type Asteroid , 2001, Science.

[9]  B. Carry,et al.  Solar System evolution from compositional mapping of the asteroid belt , 2014, Nature.

[10]  K. Glassmeier,et al.  The MASCOT Magnetometer , 2017 .

[11]  Hirotaka Sawada,et al.  Hayabusa2 Sampler: Collection of Asteroidal Surface Material , 2017 .

[12]  Hitoshi Kuninaka,et al.  Flight status of robotic asteroid sample return mission Hayabusa2 , 2016 .

[13]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[14]  C. Pilorget,et al.  The MicrOmega Investigation Onboard Hayabusa2 , 2017 .

[15]  Riken,et al.  Gamma-Ray Burst Polarimeter (GAP) aboard the Small Solar Power Sail Demonstrator IKAROS , 2010, 1010.5305.

[16]  T. Morota,et al.  Preflight Calibration Test Results for Optical Navigation Camera Telescope (ONC-T) Onboard the Hayabusa2 Spacecraft , 2017 .

[17]  Takahide Mizuno,et al.  Development of the Laser Altimeter (LIDAR) for Hayabusa2 , 2017 .

[18]  James J. Bock,et al.  New Spectral Evidence of an Unaccounted Component of the Near-infrared Extragalactic Background Light from the CIBER , 2017, 1704.07166.

[19]  J. Knollenberg,et al.  The MASCOT Radiometer MARA for the Hayabusa 2 Mission , 2013 .

[20]  John Robert Brucato,et al.  The Mars Organic Molecule Analyzer (MOMA) Instrument: Characterization of Organic Material in Martian Sediments , 2017, Astrobiology.

[21]  Akira Fujiwara,et al.  The MUSES-C mission for the sample and return—its technology development status and readiness , 2003 .

[22]  Daisuke Okumura,et al.  Multi-turn time-of-flight mass spectrometers with electrostatic sectors. , 2003, Journal of mass spectrometry : JMS.

[23]  K. Tsiganis,et al.  Chaotic capture of Jupiter's Trojan asteroids in the early Solar System , 2005, Nature.

[24]  Michael Lange,et al.  MASCOT—The Mobile Asteroid Surface Scout Onboard the Hayabusa2 Mission , 2017 .

[25]  R. Jaumann,et al.  The Camera of the MASCOT Asteroid Lander on Board Hayabusa 2 , 2017 .