TES level 1 algorithms: interferogram processing, geolocation, radiometric, and spectral calibration

The Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura satellite measures the infrared radiance emitted by the Earth's surface and atmosphere using Fourier transform spectrometry. The measured interferograms are converted into geolocated, calibrated radiance spectra by the L1 (Level 1) processing, and are the inputs to L2 (Level 2) retrievals of atmospheric parameters, such as vertical profiles of trace gas abundance. We describe the algorithmic components of TES Level 1 processing, giving examples of the intermediate results and diagnostics that are necessary for creating TES L1 products. An assessment of noise-equivalent spectral radiance levels and current systematic errors is provided. As an initial validation of our spectral radiances, TES data are compared to the Atmospheric Infrared Sounder (AIRS) (on EOS Aqua), after accounting for spectral resolution differences by applying the AIRS spectral response function to the TES spectra. For the TES L1 nadir data products currently available, the agreement with AIRS is 1 K or better.

[1]  Reinhard Beer,et al.  TES on the aura mission: scientific objectives, measurements, and analysis overview , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[2]  K. Bowman,et al.  Tropospheric Emission Spectrometer (TES) Level 1B Algorithm Theoretical Basis Document , 2000 .

[3]  Peter J. Minnett,et al.  AIRS radiance validation over ocean from sea surface temperature measurements , 2003, IEEE Trans. Geosci. Remote. Sens..

[4]  R. Norton,et al.  New apodizing functions for Fourier spectrometry , 1976 .

[5]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 , 2003 .

[6]  Larrabee L. Strow,et al.  In-flight spectral calibration of the Atmospheric Infrared Sounder , 2003, IEEE Trans. Geosci. Remote. Sens..

[7]  Reinhard Beer,et al.  Forward model and Jacobians for Tropospheric Emission Spectrometer retrievals , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Thomas S. Pagano,et al.  Prelaunch and in-flight radiometric calibration of the Atmospheric Infrared Sounder (AIRS) , 2003, IEEE Trans. Geosci. Remote. Sens..

[9]  R Beer,et al.  Instrument line-shape modeling and correction for off-axis detectors in fourier-transform spectrometry. , 2000, Applied optics.

[10]  Larrabee L. Strow,et al.  Prelaunch spectral calibration of the atmospheric infrared sounder (AIRS) , 2003, IEEE Trans. Geosci. Remote. Sens..

[11]  R. Beer Remote Sensing by Fourier Transform Spectrometry , 1992 .

[12]  Reinhard Beer,et al.  Airborne Infrared Spectroscopy of 1994 Western Wildfires , 1997 .

[13]  H. B. Howell,et al.  Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder. , 1988, Applied optics.

[14]  M Höpfner,et al.  Phase corrections for the emission sounder MIPAS-FT. , 1993, Applied optics.

[15]  David M. Rider,et al.  Tropospheric emission spectrometer for the Earth Observing System’s Aura satellite , 2001 .

[16]  T. Glavich,et al.  Tropospheric Emission Spectrometer , 2001 .

[17]  William L. Smith,et al.  Scanning High-resolution Interferometer Sounder (S-HIS) aircraft instrument and validation of the Atmospheric InfraRed Sounder (AIRS) , 2003 .

[18]  Edwin Sarkissian,et al.  Application of a nonuniform spectral resampling transform in Fourier-transform spectrometry. , 2003, Applied optics.

[19]  George A. Vanasse,et al.  Correction of Asymmetric Interferograms Obtained in Fourier Spectroscopy , 1966 .