Functionalized few-layer black phosphorus with super-wettability towards enhanced reaction kinetics for rechargeable batteries

[1]  T. Majima,et al.  Black phosphorus: A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution , 2017 .

[2]  Jianxin Zhong,et al.  Few‐Layer Black Phosphorus Nanosheets as Electrocatalysts for Highly Efficient Oxygen Evolution Reaction , 2017 .

[3]  Wei Huang,et al.  2D Black Phosphorus for Energy Storage and Thermoelectric Applications. , 2017, Small.

[4]  Hongsen Li,et al.  An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials , 2016 .

[5]  W. Wang,et al.  Understanding the growth of black phosphorus crystals , 2016 .

[6]  Zhichuan J. Xu,et al.  An Air‐Stable Densely Packed Phosphorene–Graphene Composite Toward Advanced Lithium Storage Properties , 2016 .

[7]  J. Choi,et al.  Defect-Controlled Formation of Triclinic Na2 CoP2 O7 for 4 V Sodium-Ion Batteries. , 2016, Angewandte Chemie.

[8]  Farzad Mashayek,et al.  Selective Ionic Transport Pathways in Phosphorene. , 2016, Nano letters.

[9]  Koichi Yamashita,et al.  Black Phosphorus as a High-Capacity, High-Capability Negative Electrode for Sodium-Ion Batteries: Investigation of the Electrode/Electrolyte Interface , 2016 .

[10]  Hao Liu,et al.  First-Principles Study of Phosphorene and Graphene Heterostructure as Anode Materials for Rechargeable Li Batteries. , 2015, The journal of physical chemistry letters.

[11]  Guangyuan Zheng,et al.  A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. , 2015, Nature nanotechnology.

[12]  E. Uchaker,et al.  Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries , 2015, Science China Materials.

[13]  Zhi-Xun Shen,et al.  Polarization-sensitive broadband photodetector using a black phosphorus vertical p-n junction. , 2015, Nature nanotechnology.

[14]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[15]  Jimmy C. Yu,et al.  A black–red phosphorus heterostructure for efficient visible-light-driven photocatalysis , 2015 .

[16]  Hua Zhang,et al.  Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. , 2015, Nano letters.

[17]  Jun Wang,et al.  Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics , 2015, Nature Communications.

[18]  Andres Castellanos-Gomez,et al.  Environmental instability of few-layer black phosphorus , 2014, 1410.2608.

[19]  Philipp Adelhelm,et al.  Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. , 2014, Angewandte Chemie.

[20]  Guangyuan Zheng,et al.  Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. , 2014, Nano letters.

[21]  T. Nilges,et al.  Access and in situ growth of phosphorene-precursor black phosphorus , 2014, 1406.7275.

[22]  Ya‐Xia Yin,et al.  A Sandwich‐Like Hierarchically Porous Carbon/Graphene Composite as a High‐Performance Anode Material for Sodium‐Ion Batteries , 2014 .

[23]  Jianhui Hou,et al.  Molecular design toward highly efficient photovoltaic polymers based on two-dimensional conjugated benzodithiophene. , 2014, Accounts of chemical research.

[24]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[25]  Yan Yu,et al.  Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. , 2014, Angewandte Chemie.

[26]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[27]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[28]  Shu-Lei Chou,et al.  Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. , 2013, Nano letters.

[29]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[30]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[31]  Zhenan Bao,et al.  Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles , 2013, Nature Communications.

[32]  Xinping Ai,et al.  High capacity and rate capability of amorphous phosphorus for sodium ion batteries. , 2013, Angewandte Chemie.

[33]  M. Winter,et al.  Puzzling out the origin of the electrochemical activity of black P as a negative electrode material for lithium-ion batteries , 2013 .

[34]  Jiangfeng Qian,et al.  Reversible 3-Li storage reactions of amorphous phosphorus as high capacity and cycling-stable anodes for Li-ion batteries. , 2012, Chemical communications.

[35]  Haiming Xie,et al.  Electrochemical Activity of Black Phosphorus as an Anode Material for Lithium-Ion Batteries , 2012 .

[36]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[37]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[38]  Adisorn Tuantranont,et al.  Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing , 2012 .

[39]  Fredrik J. Lindgren,et al.  Nanosilicon Electrodes for Lithium-Ion Batteries: Interfacial Mechanisms Studied by Hard and Soft X-ray Photoelectron Spectroscopy , 2012 .

[40]  Hui Xiong,et al.  Nanostructured bilayered vanadium oxide electrodes for rechargeable sodium-ion batteries. , 2012, ACS nano.

[41]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[42]  Philipp Adelhelm,et al.  Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies , 2011 .

[43]  Lei Jiang,et al.  Recent developments in bio-inspired special wettability. , 2010, Chemical Society reviews.

[44]  A. Hayashi,et al.  All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode , 2010 .

[45]  H. Sohn,et al.  Black Phosphorus and its Composite for Lithium Rechargeable Batteries , 2007 .

[46]  P. Schmidt,et al.  Au3SnP7@black phosphorus: an easy access to black phosphorus. , 2007, Inorganic chemistry.

[47]  Pedro Lavela,et al.  NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries , 2002 .

[48]  Jing Chen,et al.  Scalable Clean Exfoliation of High‐Quality Few‐Layer Black Phosphorus for a Flexible Lithium Ion Battery , 2016, Advanced materials.

[49]  Joseph K. Gallaher,et al.  Performance, morphology and photophysics of high open-circuit voltage, low band gap all-polymer solar cells , 2015 .