Local discontinuous Galerkin methods for fractional ordinary differential equations
暂无分享,去创建一个
[1] J. Hesthaven,et al. Local discontinuous Galerkin methods for fractional diffusion equations , 2013 .
[2] Norbert Heuer,et al. The optimal convergence of the h–p version of the boundary element method with quasiuniform meshes for elliptic problems on polygonal domains , 2006, Adv. Comput. Math..
[3] Rudolf Hilfer,et al. Numerical Algorithm for Calculating the Generalized Mittag-Leffler Function , 2008, SIAM J. Numer. Anal..
[4] Dominik Schötzau,et al. hp-Discontinuous Galerkin Time-Stepping for Volterra Integrodifferential Equations , 2006, SIAM J. Numer. Anal..
[5] Vít Dolejší,et al. Discontinuous Galerkin Method: Analysis and Applications to Compressible Flow , 2015 .
[6] V. Ervin,et al. Variational formulation for the stationary fractional advection dispersion equation , 2006 .
[7] Kassem Mustapha,et al. A Superconvergent discontinuous Galerkin method for Volterra integro-differential equations, smooth and non-smooth kernels , 2013, Math. Comput..
[8] Francesco Mainardi. On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$ , 2014 .
[9] Kassem Mustapha,et al. An hp-Version Discontinuous Galerkin Method for Integro-Differential Equations of Parabolic Type , 2011, SIAM J. Numer. Anal..
[10] J. Hesthaven,et al. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .
[11] N. Ford,et al. A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .
[12] Bernardo Cockburn. Discontinuous Galerkin methods , 2003 .
[13] P. Butzer,et al. AN INTRODUCTION TO FRACTIONAL CALCULUS , 2000 .
[14] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[15] William W. Hager,et al. Discontinuous Galerkin methods for ordinary differential equations , 1981 .
[16] Weihua Deng,et al. Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..
[17] Chi-Wang Shu,et al. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .
[18] Karen Dragon Devine,et al. A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems , 2002 .
[19] C. F. Lorenzo,et al. Chaos in a fractional order Chua's system , 1995 .
[20] J. Hesthaven,et al. High–order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[21] Dominik Schötzau,et al. An hp a priori error analysis of¶the DG time-stepping method for initial value problems , 2000 .
[22] Francesco Mainardi,et al. ON SOME PROPERTIES OF THE MITTAG-LEFFLER FUNCTION E α ( − t α ) , COMPLETELY MONOTONE FOR t > 0 WITH 0 < α < 1 , 2014 .
[23] S. Rebay,et al. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .
[24] I. Podlubny. Fractional differential equations , 1998 .