Local discontinuous Galerkin methods for fractional ordinary differential equations

This paper discusses the upwinded local discontinuous Galerkin methods for the one-term/multi-term fractional ordinary differential equations (FODEs). The natural upwind choice of the numerical fluxes for the initial value problem for FODEs ensures stability of the methods. The solution can be computed element by element with optimal order of convergence $$k+1$$k+1 in the $$L^2$$L2 norm and superconvergence of order $$k+1+\min \{k,\alpha \}$$k+1+min{k,α} at the downwind point of each element. Here $$k$$k is the degree of the approximation polynomial used in an element and $$\alpha $$α ($$\alpha \in (0,1]$$α∈(0,1]) represents the order of the one-term FODEs. A generalization of this includes problems with classic $$m$$m’th-term FODEs, yielding superconvergence order at downwind point as $$k+1+\min \{k,\max \{\alpha ,m\}\}$$k+1+min{k,max{α,m}}. The underlying mechanism of the superconvergence is discussed and the analysis confirmed through examples, including a discussion of how to use the scheme as an efficient way to evaluate the generalized Mittag-Leffler function and solutions to more generalized FODE’s.

[1]  J. Hesthaven,et al.  Local discontinuous Galerkin methods for fractional diffusion equations , 2013 .

[2]  Norbert Heuer,et al.  The optimal convergence of the h–p version of the boundary element method with quasiuniform meshes for elliptic problems on polygonal domains , 2006, Adv. Comput. Math..

[3]  Rudolf Hilfer,et al.  Numerical Algorithm for Calculating the Generalized Mittag-Leffler Function , 2008, SIAM J. Numer. Anal..

[4]  Dominik Schötzau,et al.  hp-Discontinuous Galerkin Time-Stepping for Volterra Integrodifferential Equations , 2006, SIAM J. Numer. Anal..

[5]  Vít Dolejší,et al.  Discontinuous Galerkin Method: Analysis and Applications to Compressible Flow , 2015 .

[6]  V. Ervin,et al.  Variational formulation for the stationary fractional advection dispersion equation , 2006 .

[7]  Kassem Mustapha,et al.  A Superconvergent discontinuous Galerkin method for Volterra integro-differential equations, smooth and non-smooth kernels , 2013, Math. Comput..

[8]  Francesco Mainardi On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$ , 2014 .

[9]  Kassem Mustapha,et al.  An hp-Version Discontinuous Galerkin Method for Integro-Differential Equations of Parabolic Type , 2011, SIAM J. Numer. Anal..

[10]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[11]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[12]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[13]  P. Butzer,et al.  AN INTRODUCTION TO FRACTIONAL CALCULUS , 2000 .

[14]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[15]  William W. Hager,et al.  Discontinuous Galerkin methods for ordinary differential equations , 1981 .

[16]  Weihua Deng,et al.  Numerical algorithm for the time fractional Fokker-Planck equation , 2007, J. Comput. Phys..

[17]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[18]  Karen Dragon Devine,et al.  A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems , 2002 .

[19]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[20]  J. Hesthaven,et al.  High–order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Dominik Schötzau,et al.  An hp a priori error analysis of¶the DG time-stepping method for initial value problems , 2000 .

[22]  Francesco Mainardi,et al.  ON SOME PROPERTIES OF THE MITTAG-LEFFLER FUNCTION E α ( − t α ) , COMPLETELY MONOTONE FOR t > 0 WITH 0 < α < 1 , 2014 .

[23]  S. Rebay,et al.  A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations , 1997 .

[24]  I. Podlubny Fractional differential equations , 1998 .