Effect algebras with state operator
暂无分享,去创建一个
[1] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[2] F. Jellett,et al. PARTIALLY ORDERED ABELIAN GROUPS WITH INTERPOLATION (Mathematical Surveys and Monographs 20) , 1987 .
[3] Tomás Kroupa,et al. Conditional probability on MV-algebras , 2005, Fuzzy Sets Syst..
[4] Stanley Gudder,et al. What Is Fuzzy Probability Theory? , 2000 .
[5] R. Kadison. A Generalized Schwarz Inequality and Algebraic Invariants for Operator Algebras , 1952 .
[6] Z. Šidák. On Relations Between Strict-Sense and Wide-Sense Conditional Expectations , 1957 .
[7] Stanley Gudder,et al. Lattice properties of quantum effects , 1996 .
[8] D. Mundici. Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .
[9] P. Busch,et al. The quantum theory of measurement , 1991 .
[10] R. Morrow,et al. Foundations of Quantum Mechanics , 1968 .
[11] Robert W. Spekkens,et al. Foundations of Quantum Mechanics , 2007 .
[12] E. Beltrametti,et al. A classical extension of quantum mechanics , 1995 .
[14] Beloslav Riečan,et al. Probability on MV algebras , 1997 .
[15] Anatolij Dvurecenskij,et al. Loomis-Sikorski theorem and Stone duality for effect algebras with internal state , 2010, Fuzzy Sets Syst..
[16] Sylvia Pulmannová,et al. Orthomodular structures as quantum logics , 1991 .
[17] D. Mundici,et al. Algebraic Foundations of Many-Valued Reasoning , 1999 .
[18] K. Kraus,et al. States, effects, and operations : fundamental notions of quantum theory : lectures in mathematical physics at the University of Texas at Austin , 1983 .
[19] Edwin Hewitt,et al. Real And Abstract Analysis , 1967 .
[20] Abner Shimony,et al. The logic of quantum mechanics , 1981 .
[21] A. Dvurecenskij. Tensor product of difference posets and effect algebras , 1995 .
[22] Daniele Mundici. Tensor Products and the Loomis-Sikorski Theorem for MV-Algebras , 1999 .
[23] J. Neumann. Mathematische grundlagen der Quantenmechanik , 1935 .
[24] H. Weber. There Are Orthomodular Lattices Without Non-trivial Group-Valued States: A Computer-Based Construction , 1994 .
[25] B. Riecan,et al. Integral, Measure, and Ordering , 1997 .
[26] Jan Kühr,et al. De Finetti theorem and Borel states in [0, 1]-valued algebraic logic , 2007, Int. J. Approx. Reason..
[27] Effect Algebras Are Not Adequate Models for Quantum Mechanics , 2010 .
[28] Franco Montagna,et al. MV-algebras with internal states and probabilistic fuzzy logics , 2009, Int. J. Approx. Reason..
[29] DANIELE MUNDICI,et al. Averaging the truth-value in Łukasiewicz logic , 1995, Stud Logica.
[30] Anatolij Dvurečenskij,et al. Loomis-sikorski theorem for σ-complete MV-algebras and ℓ-groups , 2000, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[31] K. Goodearl. Partially ordered abelian groups with interpolation , 1986 .
[32] Roberto Giuntini,et al. Toward a formal language for unsharp properties , 1989 .
[33] Stanley Gudder. Morphisms, tensor products and σ-effect algebras , 1998 .
[34] Sylvia Pulmannová,et al. New trends in quantum structures , 2000 .
[35] Mirko Navara. An orthomodular lattice admitting no group-valued measure , 1994 .
[36] E. Effros,et al. POSITIVE PROJECTIONS AND JORDAN STRUCTURE IN OPERATOR ALGEBRAS , 1979 .
[37] Pekka Lahti,et al. Partial order of quantum effects , 1995 .
[38] C. Chang,et al. Algebraic analysis of many valued logics , 1958 .
[39] S. Gudder,et al. Convex and linear effect algebras , 1999 .
[40] D. Foulis,et al. Effect algebras and unsharp quantum logics , 1994 .
[41] Mirko Navara,et al. A characterization of tribes with respect to the Łukasiewicz t-norm , 1997 .
[42] Dan Butnariu,et al. Triangular norm-based measures and their Markov kernel representation , 1991 .
[43] H. Umegaki. CONDITIONAL EXPECTATION IN AN OPERATOR ALGEBRA, II , 1954 .
[44] A. Dvurecenskij. Tensor product of difference posets , 1995 .
[45] M. Hamana. Injective envelopes of $C^{*}$-algebras , 1979 .
[46] R. Kadison,et al. Fundamentals of the Theory of Operator Algebras , 1983 .
[47] E. Effros,et al. Jordan algebras of self-adjoint operators , 1967 .
[48] G. Lüders. Über die Zustandsänderung durch den Meßprozeß , 1950 .
[49] Sylvia Pulmannová,et al. Representation theorem for convex effect algebras , 1998 .
[50] S. Gudder,et al. Convex effect algebras, state ordered effect algebras, and ordered linear spaces , 2000 .
[51] Anatolij Dvurecenskij,et al. Conditional probability on sigma-MV-algebras , 2005, Fuzzy Sets Syst..
[52] Tensor products of divisible effect algebras , 2003 .
[53] Petr Hájek,et al. Metamathematics of Fuzzy Logic , 1998, Trends in Logic.