Networks and Cycles: A Persistent Homology Approach to Complex Networks

Persistent homology is an emerging tool to identify robust topological features underlying the structure of high-dimensional data and complex dynamical systems (such as brain dynamics, molecular folding, distributed sensing).

[1]  P A Robinson,et al.  Geometric effects on complex network structure in the cortex. , 2011, Physical review letters.

[2]  John D. Lafferty,et al.  Diffusion Kernels on Graphs and Other Discrete Input Spaces , 2002, ICML.

[3]  Jörg Raisch,et al.  Subnetwork analysis reveals dynamic features of complex (bio)chemical networks , 2007, Proceedings of the National Academy of Sciences.

[4]  Bernhard Schölkopf,et al.  Learning Theory and Kernel Machines , 2003, Lecture Notes in Computer Science.

[5]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[6]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..

[7]  Marián Boguñá,et al.  Sustaining the Internet with Hyperbolic Mapping , 2010, Nature communications.

[8]  Nello Cristianini,et al.  Learning Semantic Similarity , 2002, NIPS.

[9]  Danijela Horak,et al.  Persistent homology of complex networks , 2008, 0811.2203.

[10]  Marc Barthelemy,et al.  Spatial Networks , 2010, Encyclopedia of Social Network Analysis and Mining.

[11]  Jean-Charles Delvenne,et al.  Markov Dynamics as a Zooming Lens for Multiscale Community Detection: Non Clique-Like Communities and the Field-of-View Limit , 2011, PloS one.

[12]  François Fouss,et al.  An Experimental Investigation of Graph Kernels on a Collaborative Recommendation Task , 2006, Sixth International Conference on Data Mining (ICDM'06).

[13]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[14]  Alexander J. Smola,et al.  Kernels and Regularization on Graphs , 2003, COLT.

[15]  François Fouss,et al.  Graph Nodes Clustering Based on the Commute-Time Kernel , 2007, PAKDD.

[16]  Gunter Bolch,et al.  Queueing Networks and Markov Chains , 2005 .

[17]  Gunter Bolch,et al.  Queueing Networks and Markov Chains - Modeling and Performance Evaluation with Computer Science Applications, Second Edition , 1998 .

[18]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.