Membrane Recognition and Targeting by Lipid-Binding Domains

Modular domains that recognize and target intracellular membranes play a critical role in the assembly, localization, and function of signaling and trafficking complexes in eukaryotic cells. Large domain families, including PH, FYVE, PX, PHD, and C2 domains, combine specific, nonspecific, and multivalent interactions to achieve selective membrane targeting. Despite structural and functional diversity, general features of lipid recognition are evident in the various membrane-targeting mechanisms. With eight figures, one table, and 155 references, this STKE Review describes the structural features that explain how modular domains interact with lipids. Various specific and nonspecific interactions contribute to the ability of proteins to recognize cellular membranes, allowing proteins with lipid-binding domains to play roles in cellular signaling and membrane trafficking.

[1]  S. Emr,et al.  Phox domain interaction with PtdIns(3)P targets the Vam7 t-SNARE to vacuole membranes , 2001, Nature Cell Biology.

[2]  M. Lemmon,et al.  Pleckstrin homology domains and the cytoskeleton , 2002, FEBS letters.

[3]  M. Waterfield,et al.  Synthesis and function of 3-phosphorylated inositol lipids. , 2001, Annual review of biochemistry.

[4]  H. Dyson,et al.  Structure of the PHD zinc finger from human Williams-Beuren syndrome transcription factor. , 2000, Journal of molecular biology.

[5]  Wonhwa Cho,et al.  Membrane Targeting by C1 and C2 Domains* , 2001, The Journal of Biological Chemistry.

[6]  H. Ishikawa,et al.  Structural conversion between open and closed forms of radixin: low-angle shadowing electron microscopy. , 2001, Journal of molecular biology.

[7]  K. Rossman,et al.  Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1 , 2000, Nature.

[8]  John Sondek,et al.  Multifunctional Roles for the PH Domain of Dbs in Regulating Rho GTPase Activation* , 2003, The Journal of Biological Chemistry.

[9]  L. Cantley,et al.  A Comparative Analysis of the Phosphoinositide Binding Specificity of Pleckstrin Homology Domains* , 1997, The Journal of Biological Chemistry.

[10]  N. C. Price,et al.  Binding of phosphatidylinositol 3,4,5-trisphosphate to the pleckstrin homology domain of protein kinase B induces a conformational change. , 2003, The Biochemical journal.

[11]  Jack E. Dixon,et al.  Sorting out the cellular functions of sorting nexins , 2003, Nature Reviews Molecular Cell Biology.

[12]  D. Lambright,et al.  Multivalent endosome targeting by homodimeric EEA1. , 2001, Molecular cell.

[13]  Alex Bateman,et al.  The ENTH domain , 2002, FEBS letters.

[14]  M. Andjelkovic,et al.  High Affinity Binding of Inositol Phosphates and Phosphoinositides to the Pleckstrin Homology Domain of RAC/Protein Kinase B and Their Influence on Kinase Activity* , 1997, The Journal of Biological Chemistry.

[15]  Rein Aasland,et al.  Endosomal Localization of the Autoantigen EEA1 Is Mediated by a Zinc-binding FYVE Finger* , 1996, The Journal of Biological Chemistry.

[16]  M. Nilges,et al.  Structure of a PH domain from the C. elegans muscle protein UNC-89 suggests a novel function. , 2000, Structure.

[17]  N. Verdaguer,et al.  Ca(2+) bridges the C2 membrane-binding domain of protein kinase Calpha directly to phosphatidylserine. , 1999, The EMBO journal.

[18]  Junying Yuan,et al.  The PHD Finger of the Chromatin-Associated Protein ING2 Functions as a Nuclear Phosphoinositide Receptor , 2003, Cell.

[19]  Marino Zerial,et al.  EEA1 links PI(3)K function to Rab5 regulation of endosome fusion , 1998, Nature.

[20]  M. Nilges,et al.  Structure of the pleckstrin homology domain from beta-spectrin. , 1994, Nature.

[21]  S. White,et al.  Membrane protein folding and stability: physical principles. , 1999, Annual review of biophysics and biomolecular structure.

[22]  Diana Murray,et al.  PIP(2) and proteins: interactions, organization, and information flow. , 2002, Annual review of biophysics and biomolecular structure.

[23]  M. Lemmon,et al.  All Phox Homology (PX) Domains from Saccharomyces cerevisiae Specifically Recognize Phosphatidylinositol 3-Phosphate* , 2001, The Journal of Biological Chemistry.

[24]  P. Sigler,et al.  Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. Baltimore,et al.  A putative modular domain present in diverse signaling proteins , 1993, Cell.

[26]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Czech,et al.  Phox homology domains specifically bind phosphatidylinositol phosphates. , 2001, Biochemistry.

[28]  P. Caroni New EMBO members' review: actin cytoskeleton regulation through modulation of PI(4,5)P(2) rafts. , 2001, The EMBO journal.

[29]  S. Dowler,et al.  Crystal structure of the phosphatidylinositol 3,4-bisphosphate-binding pleckstrin homology (PH) domain of tandem PH-domain-containing protein 1 (TAPP1): molecular basis of lipid specificity. , 2001, The Biochemical journal.

[30]  M. Lemmon,et al.  Signal-dependent membrane targeting by pleckstrin homology (PH) domains. , 2000, The Biochemical journal.

[31]  H. Stenmark,et al.  FYVE-finger proteins--effectors of an inositol lipid. , 1999, Journal of cell science.

[32]  S. Dowler,et al.  DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides. , 1999, The Biochemical journal.

[33]  Philippe Montcourrier,et al.  Mutagenesis of the Phosphatidylinositol 4,5-Bisphosphate (Pip2) Binding Site in the Nh2-Terminal Domain of Ezrin Correlates with Its Altered Cellular Distribution , 2000, The Journal of cell biology.

[34]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[35]  J. M. McDonnell,et al.  Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition. , 2001, Current opinion in chemical biology.

[36]  L Shapiro,et al.  G-Protein Signaling Through Tubby Proteins , 2001, Science.

[37]  P. Caroni,et al.  New EMBO members' review: actin cytoskeleton regulation through modulation of PI(4,5)P(2) rafts. , 2001, The EMBO journal.

[38]  Y. Nishizuka,et al.  The molecular heterogeneity of protein kinase C and its implications for cellular regulation , 1988, Nature.

[39]  M. Falasca,et al.  Specificity and Promiscuity in Phosphoinositide Binding by Pleckstrin Homology Domains* , 1998, The Journal of Biological Chemistry.

[40]  C. Der,et al.  Critical Role of the Pleckstrin Homology Domain in Dbs Signaling and Growth Regulation* , 2003, Journal of Biological Chemistry.

[41]  P. Bayley Why microtubules grow and shrink , 1993, Nature.

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[43]  J. Ramsden,et al.  Regulation of the binding of myristoylated alanine-rich C kinase substrate (MARCKS) related protein to lipid bilayer membranes by calmodulin. , 2000, Archives of biochemistry and biophysics.

[44]  Karthikeyan Diraviyam,et al.  Phosphatidylinositol 3-Phosphate Induces the Membrane Penetration of the FYVE Domains of Vps27p and Hrs* , 2002, The Journal of Biological Chemistry.

[45]  N. Verdaguer,et al.  Ca2+ bridges the C2 membrane‐binding domain of protein kinase Cα directly to phosphatidylserine , 1999 .

[46]  H. Stenmark,et al.  Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. , 2001, The Biochemical journal.

[47]  M. Lemmon,et al.  Molecular determinants in pleckstrin homology domains that allow specific recognition of phosphoinositides. , 2001, Biochemical Society transactions.

[48]  H. Stenmark,et al.  The endosome fusion regulator early-endosomal autoantigen 1 (EEA1) is a dimer. , 1999, The Biochemical journal.

[49]  P. De Camilli,et al.  Epidermal growth factor pathway substrate 15, Eps15. , 1999, The international journal of biochemistry & cell biology.

[50]  M. Jackson,et al.  Mutations in the Effector Binding Loops in the C2A and C2B Domains of Synaptotagmin I Disrupt Exocytosis in a Nonadditive Manner* , 2003, Journal of Biological Chemistry.

[51]  Roger L. Williams,et al.  Replacements of Single Basic Amino Acids in the Pleckstrin Homology Domain of Phospholipase C-δ1 Alter the Ligand Binding, Phospholipase Activity, and Interaction with the Plasma Membrane* , 1998, The Journal of Biological Chemistry.

[52]  James H. Hurley,et al.  Crystal Structure of a Phosphatidylinositol 3-Phosphate-Specific Membrane-Targeting Motif, the FYVE Domain of Vps27p , 1999, Cell.

[53]  D. Hinton,et al.  Efficient inhibition of Escherichia coli RNA polymerase by the bacteriophage T4 AsiA protein requires that AsiA binds first to free sigma70. , 2000, Journal of molecular biology.

[54]  J. Hurley,et al.  Signaling and subcellular targeting by membrane-binding domains. , 2000, Annual review of biophysics and biomolecular structure.

[55]  Wonhwa Cho,et al.  Membrane-binding and activation mechanism of PTEN , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  W. Hong,et al.  SNX3 regulates endosomal function through its PX-domain-mediated interaction with PtdIns(3)P , 2001, Nature Cell Biology.

[57]  M. Tyers,et al.  Molecular cloning and expression of the major protein kinase C substrate of platelets , 1988, Nature.

[58]  T. Südhof,et al.  Synaptotagmin–Syntaxin Interaction: The C2 Domain as a Ca2+-Dependent Electrostatic Switch , 1997, Neuron.

[59]  M. Czech,et al.  Activation of the Akt-related cytokine-independent survival kinase requires interaction of its phox domain with endosomal phosphatidylinositol 3-phosphate , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[60]  A. Saltiel,et al.  TCGAP, a multidomain Rho GTPase‐activating protein involved in insulin‐stimulated glucose transport , 2003, The EMBO journal.

[61]  T. Boggon,et al.  Implication of tubby proteins as transcription factors by structure-based functional analysis. , 1999, Science.

[62]  A. Davidson,et al.  Self-assembly and binding of a sorting nexin to sorting endosomes. , 2001, Journal of cell science.

[63]  D. Lambright,et al.  The FYVE Domain of Early Endosome Antigen 1 Is Required for Both Phosphatidylinositol 3-Phosphate and Rab5 Binding , 2000, The Journal of Biological Chemistry.

[64]  Michael Nilges,et al.  Structure of the pleckstrin homology domain from β-spectrin , 1994, Nature.

[65]  P. McPherson,et al.  EH domain-dependent interactions between Eps15 and clathrin-coated vesicle protein p95. , 1998, Biochemical and biophysical research communications.

[66]  L. Cantley,et al.  Transformation of chicken cells by the gene encoding the catalytic subunit of PI 3-kinase. , 1997, Science.

[67]  T. Hakoshima,et al.  Crystallographic characterization of the radixin FERM domain bound to the C-terminal region of the human Na+/H+-exchanger regulatory factor (NHERF). , 2003, Acta crystallographica. Section D, Biological crystallography.

[68]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[69]  William Arbuthnot Sir Lane,et al.  Identification of an early endosomal protein regulated by phosphatidylinositol 3-kinase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[70]  David R. Kaplan,et al.  Direct Regulation of the Akt Proto-Oncogene Product by Phosphatidylinositol-3,4-bisphosphate , 1997, Science.

[71]  Z. Derewenda,et al.  The structure of the FERM domain of merlin, the neurofibromatosis type 2 gene product. , 2002, Acta crystallographica. Section D, Biological crystallography.

[72]  T. Südhof,et al.  C2-domains, Structure and Function of a Universal Ca2+-binding Domain* , 1998, The Journal of Biological Chemistry.

[73]  Tomohiko Maehama,et al.  Crystal Structure of the PTEN Tumor Suppressor Implications for Its Phosphoinositide Phosphatase Activity and Membrane Association , 1999, Cell.

[74]  Toshio Hakoshima,et al.  Structural basis of the membrane‐targeting and unmasking mechanisms of the radixin FERM domain , 2000, The EMBO journal.

[75]  Scott D. Emr,et al.  A Membrane Coat Complex Essential for Endosome-to-Golgi Retrograde Transport in Yeast , 1998, The Journal of cell biology.

[76]  J. Thompson,et al.  The PH domain: a common piece in the structural patchwork of signalling proteins. , 1993, Trends in biochemical sciences.

[77]  Rein Aasland,et al.  The phosphatidylinositol 3‐phosphate‐binding FYVE finger , 2002, FEBS letters.

[78]  C. Burd,et al.  Phosphatidylinositol(3)-phosphate signaling mediated by specific binding to RING FYVE domains. , 1998, Molecular cell.

[79]  Diana Murray,et al.  Lateral Sequestration of Phosphatidylinositol 4,5-Bisphosphate by the Basic Effector Domain of Myristoylated Alanine-rich C Kinase Substrate Is Due to Nonspecific Electrostatic Interactions* , 2002, The Journal of Biological Chemistry.

[80]  Rein Aasland,et al.  FYVE fingers bind PtdIns(3)P , 1998, Nature.

[81]  Barry Honig,et al.  Electrostatic control of the membrane targeting of C2 domains. , 2002, Molecular cell.

[82]  Maria Deak,et al.  High-Resolution Structure of the Pleckstrin Homology Domain of Protein Kinase B/Akt Bound to Phosphatidylinositol (3,4,5)-Trisphosphate , 2002, Current Biology.

[83]  G. Prestwich,et al.  Expression Cloning of Protein Targets for 3-Phosphorylated Phosphoinositides* , 1999, The Journal of Biological Chemistry.

[84]  H. Stenmark,et al.  Hrs recruits clathrin to early endosomes , 2001, The EMBO journal.

[85]  T. Südhof,et al.  Three-Dimensional Structure of the Synaptotagmin 1 C2B-Domain Synaptotagmin 1 as a Phospholipid Binding Machine , 2001, Neuron.

[86]  Cross-talk unfolded: MARCKS proteins. , 2002, The Biochemical journal.

[87]  Michael Edidin,et al.  Lipids on the frontier: a century of cell-membrane bilayers , 2003, Nature Reviews Molecular Cell Biology.

[88]  Borivoj Vojnovic,et al.  Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy. , 2003, The Biochemical journal.

[89]  S. McLaughlin,et al.  Binding of Peptides with Basic and Aromatic Residues to Bilayer Membranes , 2003, Journal of Biological Chemistry.

[90]  J. Falke,et al.  Location of the membrane-docking face on the Ca2+-activated C2 domain of cytosolic phospholipase A2. , 1998, Biochemistry.

[91]  P. Sigler,et al.  Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain , 1995, Cell.

[92]  Xianlin Han,et al.  Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. , 2003, Journal of lipid research.

[93]  M. Lindsay,et al.  Localization of phosphatidylinositol 3‐phosphate in yeast and mammalian cells , 2000, The EMBO journal.

[94]  Josep Rizo,et al.  Solution structure of the Vam7p PX domain. , 2002, Biochemistry.

[95]  E. Querfurth,et al.  Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase. , 1996, The EMBO journal.

[96]  M. Rebecchi,et al.  Pleckstrin homology domains: a common fold with diverse functions. , 1998, Annual review of biophysics and biomolecular structure.

[97]  J. Holik,et al.  Signaling by Phosphoinositide-3,4,5-Trisphosphate Through Proteins Containing Pleckstrin and Sec7 Homology Domains , 1997, Science.

[98]  J. Ramsden,et al.  Nonelectrostatic contributions to the binding of MARCKS-related protein to lipid bilayers. , 1999, Archives of biochemistry and biophysics.

[99]  Roger L. Williams,et al.  Calcium-dependent Membrane Penetration Is a Hallmark of the C2 Domain of Cytosolic Phospholipase A2 Whereas the C2A Domain of Synaptotagmin Binds Membranes Electrostatically* , 1998, The Journal of Biological Chemistry.

[100]  A. Chawla,et al.  A functional PtdIns(3)P-binding motif , 1998, Nature.

[101]  D. Murray,et al.  Computer modeling of the membrane interaction of FYVE domains. , 2003, Journal of molecular biology.

[102]  C. Der,et al.  Structural basis for the selective activation of Rho GTPases by Dbl exchange factors , 2002, Nature Structural Biology.

[103]  S. Sprang,et al.  C2 domains from different Ca2+ signaling pathways display functional and mechanistic diversity. , 2001, Biochemistry.

[104]  Diana Murray,et al.  Membrane Binding Mechanisms of the PX Domains of NADPH Oxidase p40 phox and p47 phox * , 2003, The Journal of Biological Chemistry.

[105]  José Luis de la Pompa,et al.  Negative Regulation of PKB/Akt-Dependent Cell Survival by the Tumor Suppressor PTEN , 1998, Cell.

[106]  J. Naggert,et al.  The tubby-like proteins, a family with roles in neuronal development and function. , 2002, Journal of cell science.

[107]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[108]  M. Lemmon,et al.  High-affinity binding of a FYVE domain to phosphatidylinositol 3-phosphate requires intact phospholipid but not FYVE domain oligomerization. , 2001, Biochemistry.

[109]  G. Freiss,et al.  Membrane targeting of protein tyrosine phosphatase PTPL1 through its FERM domain via binding to phosphatidylinositol 4,5-biphosphate , 2003, Journal of Cell Science.

[110]  T. Südhof,et al.  Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. , 1998, Biochemistry.

[111]  T. Hakoshima,et al.  Structural Basis for Neurofibromatosis Type 2 , 2002, The Journal of Biological Chemistry.

[112]  Lawrence M. Lifshitz,et al.  Sequential Roles for Phosphatidylinositol 3-Phosphate and Rab5 in Tethering and Fusion of Early Endosomes via Their Interaction with EEA1* 210 , 2002, The Journal of Biological Chemistry.

[113]  H. Stenmark,et al.  FYVE finger proteins as effectors of phosphatidylinositol 3-phosphate. , 1999, Chemistry and physics of lipids.

[114]  V. Ferrans,et al.  Similarities in Function and Gene Structure of Cytohesin-4 and Cytohesin-1, Guanine Nucleotide-exchange Proteins for ADP-ribosylation Factors* , 2000, The Journal of Biological Chemistry.

[115]  S. Lietzke,et al.  Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. , 2000, Molecular cell.

[116]  Y. Xu,et al.  The Phox homology (PX) domain, a new player in phosphoinositide signalling. , 2001, The Biochemical journal.

[117]  S. McLaughlin,et al.  Ultracentrifugation technique for measuring the binding of peptides and proteins to sucrose-loaded phospholipid vesicles. , 1998, Methods in molecular biology.

[118]  T. Kigawa,et al.  Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. , 2001, Science.

[119]  N. Keep,et al.  The 2.7 A crystal structure of the activated FERM domain of moesin: an analysis of structural changes on activation. , 2001, Biochemistry.

[120]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[121]  M. Yaffe,et al.  The PX domains of p47phox and p40phox bind to lipid products of PI(3)K , 2001, Nature Cell Biology.

[122]  A. Newton,et al.  Membrane binding kinetics of protein kinase C betaII mediated by the C2 domain. , 2001, Biochemistry.

[123]  G S Taylor,et al.  PTEN and myotubularin: novel phosphoinositide phosphatases. , 2001, Annual review of biochemistry.

[124]  A. M. Riley,et al.  Structure of the PH domain from Bruton's tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. , 1999, Structure.

[125]  Pier Paolo Di Fiore,et al.  Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis , 1998, Nature.

[126]  S. Dowler,et al.  Protein Lipid Overlay Assay , 2002, Science's STKE.

[127]  M. Overduin,et al.  Structural mechanism of endosome docking by the FYVE domain. , 2001, Science.

[128]  T. Takenawa,et al.  Phosphoinositide-binding domains: Functional units for temporal and spatial regulation of intracellular signalling. , 2002, Cellular signalling.

[129]  M. Nilges,et al.  The PH superfold: a structural scaffold for multiple functions. , 1999, Trends in biochemical sciences.

[130]  Paul Tempst,et al.  PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox , 2001, Nature Cell Biology.

[131]  P. De Camilli,et al.  Epsin 1 Undergoes Nucleocytosolic Shuttling and Its Eps15 Interactor Nh2-Terminal Homology (Enth) Domain, Structurally Similar to Armadillo and Heat Repeats, Interacts with the Transcription Factor Promyelocytic Leukemia Zn2+ Finger Protein (Plzf) , 2000, The Journal of cell biology.

[132]  Fei Long,et al.  Contrasting Membrane Interaction Mechanisms of AP180 N-terminal Homology (ANTH) and Epsin N-terminal Homology (ENTH) Domains* , 2003, Journal of Biological Chemistry.

[133]  J. Holik,et al.  Distinct Polyphosphoinositide Binding Selectivities for Pleckstrin Homology Domains of GRP1-like Proteins Based on DiglycineVersus Triglycine Motifs* , 2000, The Journal of Biological Chemistry.

[134]  John Sondek,et al.  A crystallographic view of interactions between Dbs and Cdc42: PH domain‐assisted guanine nucleotide exchange , 2002, The EMBO journal.

[135]  P. Lipp,et al.  FENS-1 and DFCP1 are FYVE domain-containing proteins with distinct functions in the endosomal and Golgi compartments. , 2001, Journal of cell science.

[136]  Roger L. Williams,et al.  The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. , 2001, Molecular cell.

[137]  Simon Andrews,et al.  The PX domain: a new phosphoinositide-binding module. , 2002, Journal of cell science.

[138]  S. C. Liu,et al.  The FERM domain: A unique module involved in the linkage of cytoplasmic proteins to the membrane , 1998 .

[139]  J. B. Park,et al.  Phosphorylation and activation of phospholipase D1 by protein kinase C in vivo: determination of multiple phosphorylation sites. , 1999, Biochemistry.

[140]  S. Dowler,et al.  Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. , 2000, The Biochemical journal.

[141]  C. Andreoli,et al.  Identification of a phosphatidylinositol‐4,5‐bisphosphate‐binding domain in the N‐terminal region of ezrin , 1995, FEBS letters.

[142]  P. Karplus,et al.  Structure of the ERM Protein Moesin Reveals the FERM Domain Fold Masked by an Extended Actin Binding Tail Domain , 2000, Cell.

[143]  S. McLaughlin,et al.  The Effector Domain of Myristoylated Alanine-rich C Kinase Substrate Binds Strongly to Phosphatidylinositol 4,5-Bisphosphate* , 2001, The Journal of Biological Chemistry.

[144]  M. Edidin,et al.  Shrinking patches and slippery rafts: scales of domains in the plasma membrane. , 2001, Trends in cell biology.

[145]  C. Burd,et al.  Phosphatidylinositol 3-phosphate recognition by the FYVE domain. , 1999, Molecular cell.

[146]  P. Cohen,et al.  Characterization of a novel phosphatidylinositol 3-phosphate-binding protein containing two FYVE fingers in tandem that is targeted to the Golgi. , 2001, The Biochemical journal.

[147]  H. Stenmark,et al.  FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. , 2001, Journal of cell science.

[148]  T. Martin PI(4,5)P(2) regulation of surface membrane traffic. , 2001, Current opinion in cell biology.

[149]  E. Pécheur,et al.  Ent3p Is a PtdIns(3,5)P2 effector required for protein sorting to the multivesicular body. , 2003, Developmental cell.

[150]  E. Lai Lipid rafts make for slippery platforms , 2003, The Journal of cell biology.

[151]  R. Abagyan,et al.  Identification and analysis of PH domain‐containing targets of phosphatidylinositol 3‐kinase using a novel in vivo assay in yeast , 1998, The EMBO journal.

[152]  B. Hemmings,et al.  Pleckstrin domain homology , 1993, Nature.

[153]  K. Mikoshiba,et al.  Mutation of the Pleckstrin Homology Domain of Bruton's Tyrosine Kinase in Immunodeficiency Impaired Inositol 1,3,4,5-Tetrakisphosphate Binding Capacity* , 1996, The Journal of Biological Chemistry.

[154]  Hidekazu Hiroaki,et al.  Solution structure of the PX domain, a target of the SH3 domain , 2001, Nature Structural Biology.

[155]  Tomohiko Maehama,et al.  The Tumor Suppressor, PTEN/MMAC1, Dephosphorylates the Lipid Second Messenger, Phosphatidylinositol 3,4,5-Trisphosphate* , 1998, The Journal of Biological Chemistry.

[156]  Ian G. Mills,et al.  Curvature of clathrin-coated pits driven by epsin , 2002, Nature.

[158]  M. Lemmon,et al.  Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. , 2000, Molecular cell.

[159]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[160]  R. Teasdale,et al.  The Phox Homology (PX) Domain-dependent, 3-Phosphoinositide-mediated Association of Sorting Nexin-1 with an Early Sorting Endosomal Compartment Is Required for Its Ability to Regulate Epidermal Growth Factor Receptor Degradation* , 2002, The Journal of Biological Chemistry.

[161]  I. Mills,et al.  Involvement of the endosomal autoantigen EEA1 in homotypic fusion of early endosomes , 1998, Current Biology.

[162]  M. Lemmon,et al.  Phosphoinositide Recognition Domains , 2003, Traffic.

[163]  Jerónimo Bravo,et al.  Binding of the PX domain of p47phox to phosphatidylinositol 3,4‐bisphosphate and phosphatidic acid is masked by an intramolecular interaction , 2002, The EMBO journal.