7. Space-time finite element methods for parabolic evolution equations: discretization, a posteriori error estimation, adaptivity and solution

In this work, we present an overview on the development of space–time finite element methods for the numerical solution of some parabolic evolution equations with the heat equation as a model problem. Instead of using more standard semi– discretization approaches such as the method of lines or Rothe’s method, our specific focus is on continuous space–time finite element discretizations in space and time simultaneously. While such discretizations bring more flexibility to the space–time finite element error analysis and error control, they usually lead to higher computational complexity and memory consumptions in comparison with standard time– stepping methods. Therefore, progress on a posteriori error estimation and respective adaptive schemes in the space–time domain is reviewed, which aims to save a number of degrees of freedom, and hence reduces complexity, and recovers optimal order error estimates. Further, we provide a summary on recent advances in efficient parallel space–time iterative solution strategies for the related large–scale linear systems of algebraic equations, that are crucial to make such all–at–once approaches competitive with traditional time stepping methods. Finally, some numerical results are given to demonstrate the benefits of a particular adaptive space–time finite element method, the robustness of some space–time algebraic multigrid methods, and the applicability of space–time finite element methods for the solution of some parabolic optimal control problem.

[1]  Dmitriy Leykekhman,et al.  A posteriori error estimates by recovered gradients in parabolic finite element equations , 2008 .

[2]  Martin Vohralík,et al.  A Posteriori Error Estimates for Lowest-Order Mixed Finite Element Discretizations of Convection-Diffusion-Reaction Equations , 2007, SIAM J. Numer. Anal..

[3]  H. Freudenthal Simplizialzerlegungen von Beschrankter Flachheit , 1942 .

[4]  O. Lakkis,et al.  Gradient recovery in adaptive finite-element methods for parabolic problems , 2009, 0905.2764.

[5]  Igor Kossaczký A recursive approach to local mesh refinement in two and three dimensions , 1994 .

[6]  G. Murali Mohan Reddy,et al.  A Posteriori Error Analysis of Two-Step Backward Differentiation Formula Finite Element Approximation for Parabolic Interface Problems , 2016, J. Sci. Comput..

[7]  Omar Lakkis,et al.  A comparison of duality and energy a posteriori estimates for L∞(0, T;L2(Ω)) in parabolic problems , 2007, Math. Comput..

[8]  Lothar Banz,et al.  hp-adaptive IPDG/TDG-FEM for parabolic obstacle problems , 2014, Comput. Math. Appl..

[9]  M. Chipot Finite Element Methods for Elliptic Problems , 2000 .

[10]  Claes Johnson,et al.  Error estimates and automatic time step control for nonlinear parabolic problems, I , 1987 .

[11]  Bärbel Holm,et al.  Fully reliable error control for first-order evolutionary problems , 2017, Comput. Math. Appl..

[12]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[13]  Boris Vexler,et al.  Pointwise Best Approximation Results for Galerkin Finite Element Solutions of Parabolic Problems , 2015, SIAM J. Numer. Anal..

[14]  Olaf Steinbach,et al.  Coercive space-time finite element methods for initial boundary value problems , 2020 .

[15]  Ricardo H. Nochetto,et al.  A posteriori error control for the Allen–Cahn problem: circumventing Gronwall's inequality , 2004 .

[16]  K. Stüben A review of algebraic multigrid , 2001 .

[17]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[18]  R. Verfürth A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations , 1994 .

[19]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[20]  U. Trottenberg,et al.  A note on MGR methods , 1983 .

[21]  Dietrich Braess,et al.  Equilibrated residual error estimates are p-robust , 2009 .

[22]  Jesse Chan,et al.  Locally conservative discontinuous Petrov-Galerkin finite elements for fluid problems , 2014, Comput. Math. Appl..

[23]  Ricardo H. Nochetto,et al.  A posteriori error estimation and adaptivity for degenerate parabolic problems , 2000, Math. Comput..

[24]  A. Schmidt,et al.  Design and convergence analysis for an adaptive discretization of the heat equation , 2012 .

[25]  D. Aronson,et al.  Non-negative solutions of linear parabolic equations , 1968 .

[26]  Santiago Badia,et al.  Space-Time Balancing Domain Decomposition , 2017, SIAM J. Sci. Comput..

[27]  J. Lions,et al.  Sur les problèmes mixtes pour certains systèmes paraboliques dans les ouverts non cylindriques , 1957 .

[28]  R. Hoppe,et al.  A Posteriori Estimates for Cost Functionals of Optimal Control Problems , 2006 .

[29]  A. Friedman Variational principles and free-boundary problems , 1982 .

[30]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[31]  Rolf Rannacher,et al.  Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..

[32]  Denis Devaud hp-approximation of linear parabolic evolution problems in H^{1/2} , 2017 .

[33]  Philippe Destuynder,et al.  Explicit error bounds in a conforming finite element method , 1999, Math. Comput..

[34]  Ricardo H. Nochetto,et al.  A PDE Approach to Fractional Diffusion in General Domains: A Priori Error Analysis , 2013, Found. Comput. Math..

[35]  Christian Mollet,et al.  Stability of Petrov–Galerkin Discretizations: Application to the Space-Time Weak Formulation for Parabolic Evolution Problems , 2014, Comput. Methods Appl. Math..

[36]  Rolf Krause,et al.  Variational space–time elements for large-scale systems , 2017 .

[37]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[38]  Douglas N. Arnold,et al.  Finite element exterior calculus for parabolic problems , 2012, 1209.1142.

[39]  Joseph M. Maubach,et al.  Local bisection refinement for $n$-simplicial grids generated by reflection , 2017 .

[40]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[41]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[42]  Alan Demlow,et al.  Sharply local pointwise a posteriori error estimates for parabolic problems , 2010, Math. Comput..

[43]  Martin Neumüller,et al.  Time-multipatch discontinuous Galerkin space-time isogeometric analysis of parabolic evolution problems , 2018 .

[44]  TZ , 2019, Springer Reference Medizin.

[45]  Jörg Grande,et al.  Red-green refinement of simplicial meshes in d dimensions , 2018, Math. Comput..

[46]  Kenneth Eriksson,et al.  Time discretization of parabolic problems by the discontinuous Galerkin method , 1985 .

[47]  V. Bulgakov Multi-level iterative technique and aggregation concept with semi-analytical preconditioning for solving boundary-value problems , 1993 .

[48]  Norbert Heuer,et al.  A Time-Stepping DPG Scheme for the Heat Equation , 2016, Comput. Methods Appl. Math..

[49]  Jay Gopalakrishnan A CLASS OF DISCONTINUOUS PETROV-GALERKIN METHODS. PART II: OPTIMAL TEST FUNCTIONS , 2009 .

[50]  R. Nochetto,et al.  Theory of adaptive finite element methods: An introduction , 2009 .

[51]  Andreas Veeser,et al.  A posteriori error estimators, gradient recovery by averaging, and superconvergence , 2006, Numerische Mathematik.

[52]  Olaf Steinbach,et al.  Space-Time Finite Element Methods for Parabolic Problems , 2015, Comput. Methods Appl. Math..

[53]  Bo Li,et al.  Analysis of a Class of Superconvergence Patch Recovery Techniques for Linear and Bilinear Finite Elements , 1999 .

[54]  Peter Monk,et al.  Continuous finite elements in space and time for the heat equation , 1989 .

[55]  Leszek Demkowicz,et al.  A class of discontinuous Petrov-Galerkin methods. Part III , 2012 .

[56]  Graham Horton,et al.  A Space-Time Multigrid Method for Parabolic Partial Differential Equations , 1995, SIAM J. Sci. Comput..

[58]  F. Bornemann,et al.  Adaptive multivlevel methods in three space dimensions , 1993 .

[59]  Fredi Tröltzsch,et al.  On the optimal control of the Schlögl-model , 2013, Comput. Optim. Appl..

[60]  Panayot S. Vassilevski,et al.  On Generalizing the Algebraic Multigrid Framework , 2004, SIAM J. Numer. Anal..

[61]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[62]  Leszek F. Demkowicz,et al.  Analysis of the DPG Method for the Poisson Equation , 2011, SIAM J. Numer. Anal..

[63]  Boris Vexler,et al.  Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems , 2007, SIAM J. Control. Optim..

[64]  Svetlana Matculevich,et al.  Computable estimates of the distance to the exact solution of the evolutionary reaction-diffusion equation , 2013, Appl. Math. Comput..

[65]  Barry Joe,et al.  Quality Local Refinement of Tetrahedral Meshes Based on Bisection , 1995, SIAM J. Sci. Comput..

[66]  Charalambos Makridakis,et al.  Space and time reconstructions in a posteriori analysis of evolution problems , 2007 .

[67]  O. Steinbach,et al.  Space–time DG methods for the coupled electro–mechanical activation of the human heart , 2014 .

[68]  Serge Prudhomme,et al.  A posteriori error estimation and error control for finite element approximations of the time-dependent Navier-Stokes equations , 1999 .

[69]  Andrew Gillette,et al.  Finite Element Exterior Calculus for Evolution Problems , 2012, 1202.1573.

[70]  M. Picasso Adaptive finite elements for a linear parabolic problem , 1998 .

[71]  Robert D. Falgout,et al.  Compatible Relaxation and Coarsening in Algebraic Multigrid , 2009, SIAM J. Sci. Comput..

[72]  M. Holst,et al.  Finite Element Exterior Calculus for Parabolic Evolution Problems on Riemannian Hypersurfaces , 2015, Journal of Computational Mathematics.

[73]  Stefano Berrone,et al.  A Local-in-Space-Timestep Approach to a Finite Element Discretization of the Heat Equation with a Posteriori Estimates , 2009, SIAM J. Numer. Anal..

[74]  Arnold Reusken,et al.  Parallel Multilevel Tetrahedral Grid Refinement , 2005, SIAM J. Sci. Comput..

[75]  Martin Vohralík,et al.  A Posteriori Error Estimation Based on Potential and Flux Reconstruction for the Heat Equation , 2010, SIAM J. Numer. Anal..

[76]  Christoph Schwab,et al.  Space–time hp-approximation of parabolic equations , 2018, Calcolo.

[77]  F. Schlögl,et al.  A characteristic critical quantity in nonequilibrium phase transitions , 1983 .

[78]  C. Kreuzer Reliable and efficient a posteriori error estimates for finite element approximations of the parabolic $$p$$-Laplacian , 2013 .

[79]  Javier de Frutos,et al.  A posteriori error estimation with the p-version of the finite element method for nonlinear parabolic differential equations☆ , 2002 .

[80]  C. T. Traxler,et al.  An algorithm for adaptive mesh refinement inn dimensions , 1997, Computing.

[81]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[82]  Ningning Yan,et al.  A posteriori error estimates for optimal control problems governed by parabolic equations , 2003, Numerische Mathematik.

[83]  Magnus Fontes,et al.  Parabolic equations with low regularity , 1996 .

[84]  Alan Demlow,et al.  A Posteriori Error Estimates in the Maximum Norm for Parabolic Problems , 2007, SIAM J. Numer. Anal..

[85]  Shinichi Kawahara Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain , 1977 .

[86]  Alexandre Ern,et al.  Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations , 2007, Math. Comput..

[87]  Sergey I. Repin,et al.  A posteriori error estimation for variational problems with uniformly convex functionals , 2000, Math. Comput..

[88]  Martin J. Gander,et al.  50 Years of Time Parallel Time Integration , 2015 .

[89]  G. Gustafson,et al.  Boundary Value Problems of Mathematical Physics , 1998 .

[90]  Ulrich Langer,et al.  Multipatch Space-Time Isogeometric Analysis of Parabolic Diffusion Problems , 2017, LSSC.

[91]  Stig Larsson,et al.  Compressive space-time Galerkin discretizations of parabolic partial differential equations , 2015, 1501.04514.

[92]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[93]  Marian Brezina,et al.  Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems , 2005, Computing.

[94]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[95]  U. Langer,et al.  A posteriori error estimates for space-time IgA approximations to parabolic initial boundary value problems , 2016, 1612.08998.

[96]  Ricardo H. Nochetto,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[97]  Xianjuan Li,et al.  Finite difference/spectral approximations for the fractional cable equation , 2010, Math. Comput..

[98]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[99]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..

[100]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[101]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[102]  Constantin Popa ALGEBRAIC MULTIGRID SMOOTHING PROPERTY OF KACZMARZ'S RELAXATION FOR GENERAL RECTANGULAR LINEAR SYSTEMS , 2007 .

[103]  Kenneth Eriksson,et al.  Adaptive Finite Element Methods for Parabolic Problems VI: Analytic Semigroups , 1998 .

[104]  T. Hughes,et al.  Space-time finite element methods for elastodynamics: formulations and error estimates , 1988 .

[105]  Wenbin Liu,et al.  A Posteriori Error Estimates for Finite Element Approximation of Parabolic p-Laplacian , 2006, SIAM J. Numer. Anal..

[106]  R. Rodríguez Some remarks on Zienkiewicz‐Zhu estimator , 1994 .

[107]  Huidong Yang,et al.  Partitioned solvers for the fluid-structure interaction problems with a nearly incompressible elasticity model , 2011, Comput. Vis. Sci..

[108]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM Journal on Scientific Computing.

[109]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .

[110]  D. Arnold Finite Element Exterior Calculus , 2018 .

[111]  Yves Achdou,et al.  A Posteriori Error Estimates for Parabolic Variational Inequalities , 2008, J. Sci. Comput..

[112]  Martin J. Gander,et al.  Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems , 2014, SIAM J. Sci. Comput..

[113]  A posteriori error estimates for approximations of evolutionary convection–diffusion problems , 2010, 1012.5089.

[114]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[115]  Randolph E. Bank,et al.  PLTMG - a software package for solving elliptic partial differential equations: users' guide 8.0 , 1998, Software, environments, tools.

[116]  Xuemin Tu Three-Level BDDC in Three Dimensions , 2007, SIAM J. Sci. Comput..

[117]  Panayot S. Vassilevski,et al.  The Construction of the Coarse de Rham Complexes with Improved Approximation Properties , 2014, Comput. Methods Appl. Math..

[118]  Sören Bartels,et al.  Quasi-optimal and robust a posteriori error estimates in L∞(L2) for the approximation of Allen-Cahn equations past singularities , 2011, Math. Comput..

[119]  Ulrich Langer,et al.  Space–time isogeometric analysis of parabolic evolution problems , 2015, 1509.02008.

[120]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[121]  Stefano Berrone,et al.  Adaptive discretization of stationary and incompressible Navier–Stokes equations by stabilized finite element methods , 2001 .

[122]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: Low order conforming, nonconforming, and mixed FEM , 2002, Math. Comput..

[123]  Sergey Repin,et al.  Accuracy Verification Methods , 2014 .

[124]  Ludmil T. Zikatanov,et al.  Arbitrary dimension convection-diffusion schemes for space-time discretizations , 2016, J. Comput. Appl. Math..

[125]  R. Bank,et al.  Some Refinement Algorithms And Data Structures For Regular Local Mesh Refinement , 1983 .

[126]  Robert D. Falgout,et al.  Multigrid methods with space–time concurrency , 2017, Comput. Vis. Sci..

[127]  Mats Boman,et al.  Global and Localised A Posteriori Error Analysis in the maximum norm for finite element approximations of a convection-diffusion problem , 2000 .

[128]  Haijun Wu,et al.  A Posteriori Error Estimates and an Adaptive Finite Element Method for the Allen–Cahn Equation and the Mean Curvature Flow , 2005, J. Sci. Comput..

[129]  Karsten Urban,et al.  An improved error bound for reduced basis approximation of linear parabolic problems , 2013, Math. Comput..

[130]  Theodoros Katsaounis,et al.  A posteriori error control and adaptivity for Crank–Nicolson finite element approximations for the linear Schrödinger equation , 2013, Numerische Mathematik.

[131]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[132]  Ferdinand Kickinger,et al.  Algebraic Multi-grid for Discrete Elliptic Second-Order Problems , 1998 .

[133]  J. Douglas,et al.  Galerkin Methods for Parabolic Equations , 1970 .

[134]  Panagiotis Chatzipantelidis,et al.  A Posteriori Error Estimates for the Two-Step Backward Differentiation Formula Method for Parabolic Equations , 2010, SIAM J. Numer. Anal..

[135]  Omar Lakkis,et al.  Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems , 2006, Math. Comput..

[136]  Jia Feng,et al.  An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..

[137]  Fredi Tröltzsch,et al.  Sparse Optimal Control of the Schlögl and FitzHugh–Nagumo Systems , 2013, Comput. Methods Appl. Math..

[138]  Thomas A. Manteuffel,et al.  Multigrid Reduction in Time for Nonlinear Parabolic Problems: A Case Study , 2017, SIAM J. Sci. Comput..

[139]  Martin Vohralík,et al.  Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems , 2010, J. Comput. Appl. Math..

[140]  Rob P. Stevenson,et al.  Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..

[141]  Ricardo H. Nochetto,et al.  Error estimates for multidimensional singular parabolic problems , 1987 .

[142]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[143]  Bosco Garc,et al.  Postprocessing the Galerkin Method: The Finite-Element Case , 1999 .

[144]  Roland Becker,et al.  A posteriori error estimation for finite element discretization of parameter identification problems , 2004, Numerische Mathematik.

[145]  Roman Andreev,et al.  Stability of space-time Petrov-Galerkin discretizations for parabolic evolution equations , 2012 .

[146]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[147]  J. Bey,et al.  Tetrahedral grid refinement , 1995, Computing.

[148]  Carsten Carstensen,et al.  Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM , 2002, Math. Comput..

[149]  Jürgen Bey,et al.  Simplicial grid refinement: on Freudenthal's algorithm and the optimal number of congruence classes , 2000, Numerische Mathematik.

[150]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[151]  K. Stüben,et al.  Multigrid methods: Fundamental algorithms, model problem analysis and applications , 1982 .

[152]  Ricardo H. Nochetto,et al.  Error Control and Andaptivity for a Phase Relaxation Model , 2000 .

[153]  Jinchao Xu,et al.  Asymptotically Exact A Posteriori Error Estimators, Part I: Grids with Superconvergence , 2003, SIAM J. Numer. Anal..

[154]  Alexandre Ern,et al.  Equilibrated flux a posteriori error estimates in $L^2(H^1)$-norms for high-order discretizations of parabolic problems , 2017, IMA Journal of Numerical Analysis.

[155]  Ulrich Langer,et al.  Functional A Posteriori Error Estimates for Parabolic Time-Periodic Boundary Value Problems , 2014, Comput. Methods Appl. Math..

[156]  Francisco José Gaspar,et al.  Multigrid method based on a space-time approach with standard coarsening for parabolic problems , 2018, Appl. Math. Comput..

[157]  Danping Yang,et al.  Sharp A Posteriori Error Estimates for Optimal Control Governed by Parabolic Integro-Differential Equations , 2014, Journal of Scientific Computing.

[158]  Rüdiger Verfürth,et al.  A posteriori error analysis of the fully discretized time-dependent Stokes equations , 2004 .

[159]  S. Nicaise,et al.  An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems , 2007 .

[160]  Abner J. Salgado,et al.  A Space-Time Fractional Optimal Control Problem: Analysis and Discretization , 2016, SIAM J. Control. Optim..

[161]  O. Steinbach Adaptive nite element – boundary element solution of boundary value problems , 1999 .

[162]  Mark Ainsworth,et al.  A Synthesis of A Posteriori Error Estimation Techniques for Conforming , Non-Conforming and Discontinuous Galerkin Finite Element Methods , 2005 .

[163]  Svetlana Matculevich,et al.  On the a posteriori error analysis for linear Fokker-Planck models in convection-dominated diffusion problems , 2018, Appl. Math. Comput..

[164]  Simona Perotto,et al.  Anisotropic error estimates for elliptic problems , 2003, Numerische Mathematik.

[165]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[166]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[167]  Truman Everett Ellis Space-time discontinuous Petrov-Galerkin finite elements for transient fluid mechanics , 2016 .

[168]  Olaf Steinbach,et al.  Refinement of flexible space–time finite element meshes and discontinuous Galerkin methods , 2011, Comput. Vis. Sci..

[169]  Michael J. Holst,et al.  Geometric Variational Crimes: Hilbert Complexes, Finite Element Exterior Calculus, and Problems on Hypersurfaces , 2010, Foundations of Computational Mathematics.

[170]  Wolfgang Joppich,et al.  Practical Fourier Analysis for Multigrid Methods , 2004 .

[171]  Stefano Berrone,et al.  Space-Time adaptive simulations for unsteady Navier-Stokes problems , 2009 .

[172]  Jens Lang,et al.  Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems - Theory, Algorithm, and Applications , 2001, Lecture Notes in Computational Science and Engineering.

[173]  Leszek Demkowicz,et al.  An Overview of the Discontinuous Petrov Galerkin Method , 2014 .

[174]  Boris Vexler,et al.  Adaptivity with Dynamic Meshes for Space-Time Finite Element Discretizations of Parabolic Equations , 2007, SIAM J. Sci. Comput..

[175]  Mary Fanett A PRIORI L2 ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS TO PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 1973 .

[176]  Yousef Saad,et al.  A Greedy Strategy for Coarse-Grid Selection , 2007, SIAM J. Sci. Comput..

[177]  Christine Bernardi,et al.  A posteriori analysis of the finite element discretization of some parabolic equations , 2004, Math. Comput..

[178]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems V: long-time integration , 1995 .

[179]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[180]  Natalia Kopteva,et al.  Maximum Norm A Posteriori Error Estimation for Parabolic Problems Using Elliptic Reconstructions , 2013, SIAM J. Numer. Anal..