Global solutions for a strongly coupled fractional reaction-diffusion system in Marcinkiewicz spaces

Abstract We prove the existence of solutions to the Cauchy problem for a strongly coupled semilinear reaction-diffusion system in Marcinkiewicz spaces L ( p 1 , ∞ ) × L ( p 2 , ∞ ) . The exponents p 1 , p 2 are chosen in a way that allows us to prove the existence of self-similar for this system. We present a fractional version of Yamazaki’s inequality, an essential tool that potentially applies to other fractional-in-time PDEs.

[1]  Ahmed Alsaedi,et al.  Global existence and asymptotic behavior for a time fractional reaction-diffusion system , 2017, Comput. Math. Appl..

[2]  Miguel A. Herrero,et al.  Boundedness and blow up for a semilinear reaction-diffusion system , 1991 .

[3]  J. Klafter,et al.  Anomalous transport in disordered systems under the influence of external fields , 1999 .

[4]  K. M. Owolabi,et al.  Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system , 2020 .

[5]  C. Cuevas,et al.  On the time‐fractional Keller‐Segel model for chemotaxis , 2019, Mathematical Methods in the Applied Sciences.

[6]  S. Wearne,et al.  Fractional Reaction-Diffusion , 2000 .

[7]  A. Viana A local theory for a fractional reaction-diffusion equation , 2019, Communications in Contemporary Mathematics.

[8]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[9]  Chia-Ven Pao,et al.  Nonlinear parabolic and elliptic equations , 1993 .

[10]  Denis Blackmore,et al.  Analysis of the solutions of coupled nonlinear fractional reaction–diffusion equations , 2009 .

[11]  F. Alzahrani,et al.  Blowing-up solutions for a nonlinear time-fractional system , 2017 .

[12]  Henghui Zou Blow-up rates for semi-linear reaction–diffusion systems , 2014 .

[13]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[14]  C. Cuevas,et al.  Existence and asymptotic behaviour for the time‐fractional Keller–Segel model for chemotaxis , 2018, Mathematische Nachrichten.

[15]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[16]  K. M. Owolabi Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems , 2016 .

[17]  Nicholas D. Alikakos,et al.  LP Bounds of solutions of reaction-diffusion equations , 1979 .

[18]  Arvo Lannus,et al.  Gas‐Liquid Reactions , 1970 .

[19]  S. Qureshi,et al.  Fractional modeling for a chemical kinetic reaction in a batch reactor via nonlocal operator with power law kernel , 2020 .

[20]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[21]  Gabriela Planas,et al.  Mild solutions to the time fractional Navier-Stokes equations in R-N , 2015 .

[22]  Bruno de Andrade,et al.  On a fractional reaction–diffusion equation , 2017 .

[23]  S. Wearne,et al.  Existence of Turing Instabilities in a Two-Species Fractional Reaction-Diffusion System , 2002, SIAM J. Appl. Math..

[24]  A. Alsaedi,et al.  Non-existence of Global Solutions to a System of Fractional Diffusion Equations , 2014 .

[25]  M. Yamazaki The Navier-Stokes equations in the weak- $L^n$ space with time-dependent external force , 2000 .

[26]  Ahmed Alsaedi,et al.  Global existence of solutions to a nonlinear anomalous diffusion system , 2016, Appl. Math. Lett..

[27]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[28]  L. Ferreira,et al.  Self-similarity and uniqueness of solutions for semilinear reaction-diffusion systems , 2010, Advances in Differential Equations.