Global solutions for a strongly coupled fractional reaction-diffusion system in Marcinkiewicz spaces
暂无分享,去创建一个
Claudio Cuevas | Arlúcio Viana | Alejandro Caicedo | Éder Mateus | A. Viana | C. Cuevas | A. Caicedo | Éder Mateus
[1] Ahmed Alsaedi,et al. Global existence and asymptotic behavior for a time fractional reaction-diffusion system , 2017, Comput. Math. Appl..
[2] Miguel A. Herrero,et al. Boundedness and blow up for a semilinear reaction-diffusion system , 1991 .
[3] J. Klafter,et al. Anomalous transport in disordered systems under the influence of external fields , 1999 .
[4] K. M. Owolabi,et al. Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system , 2020 .
[5] C. Cuevas,et al. On the time‐fractional Keller‐Segel model for chemotaxis , 2019, Mathematical Methods in the Applied Sciences.
[6] S. Wearne,et al. Fractional Reaction-Diffusion , 2000 .
[7] A. Viana. A local theory for a fractional reaction-diffusion equation , 2019, Communications in Contemporary Mathematics.
[8] J. Klafter,et al. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .
[9] Chia-Ven Pao,et al. Nonlinear parabolic and elliptic equations , 1993 .
[10] Denis Blackmore,et al. Analysis of the solutions of coupled nonlinear fractional reaction–diffusion equations , 2009 .
[11] F. Alzahrani,et al. Blowing-up solutions for a nonlinear time-fractional system , 2017 .
[12] Henghui Zou. Blow-up rates for semi-linear reaction–diffusion systems , 2014 .
[13] M. T. Cicero. FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .
[14] C. Cuevas,et al. Existence and asymptotic behaviour for the time‐fractional Keller–Segel model for chemotaxis , 2018, Mathematische Nachrichten.
[15] Jöran Bergh,et al. Interpolation Spaces: An Introduction , 2011 .
[16] K. M. Owolabi. Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems , 2016 .
[17] Nicholas D. Alikakos,et al. LP Bounds of solutions of reaction-diffusion equations , 1979 .
[18] Arvo Lannus,et al. Gas‐Liquid Reactions , 1970 .
[19] S. Qureshi,et al. Fractional modeling for a chemical kinetic reaction in a batch reactor via nonlocal operator with power law kernel , 2020 .
[20] J. Klafter,et al. The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .
[21] Gabriela Planas,et al. Mild solutions to the time fractional Navier-Stokes equations in R-N , 2015 .
[22] Bruno de Andrade,et al. On a fractional reaction–diffusion equation , 2017 .
[23] S. Wearne,et al. Existence of Turing Instabilities in a Two-Species Fractional Reaction-Diffusion System , 2002, SIAM J. Appl. Math..
[24] A. Alsaedi,et al. Non-existence of Global Solutions to a System of Fractional Diffusion Equations , 2014 .
[25] M. Yamazaki. The Navier-Stokes equations in the weak- $L^n$ space with time-dependent external force , 2000 .
[26] Ahmed Alsaedi,et al. Global existence of solutions to a nonlinear anomalous diffusion system , 2016, Appl. Math. Lett..
[27] W. Schneider,et al. Fractional diffusion and wave equations , 1989 .
[28] L. Ferreira,et al. Self-similarity and uniqueness of solutions for semilinear reaction-diffusion systems , 2010, Advances in Differential Equations.