Simplex with sum of infeasibilities for SMT
暂无分享,去创建一个
[1] Bruno Dutertre,et al. A Fast Linear-Arithmetic Solver for DPLL(T) , 2006, CAV.
[2] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[3] Nikolaj Bjørner,et al. Z3: An Efficient SMT Solver , 2008, TACAS.
[4] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[5] Alberto Griggio,et al. The MathSAT5 SMT Solver , 2013, TACAS.
[6] David Detlefs,et al. Simplify: a theorem prover for program checking , 2005, JACM.
[7] Albert Oliveras,et al. SAT Modulo the Theory of Linear Arithmetic: Exact, Inexact and Commercial Solvers , 2008, SAT.
[8] Bruno Dutertre,et al. Integrating Simplex with DPLL(T ) , 2006 .
[9] Roberto Bruttomesso,et al. The OpenSMT Solver , 2010, TACAS.
[10] Philip E. Gill,et al. Numerical Linear Algebra and Optimization , 1991 .
[11] Peter D. Karp,et al. Construction and completion of flux balance models from pathway databases , 2012, Bioinform..
[12] Alberto Griggio,et al. An Effective SMT Engine for Formal Verification , 2009 .
[13] David Monniaux,et al. On using floating-point computations to help an exact linear arithmetic decision procedure , 2009, CAV.
[14] Ulrich Junker. Conflict Detection for Arbitrary Constraint Propagation Algorithms , 2001 .
[15] David Monniaux,et al. Experiments on the feasibility of using a floating-point simplex in an SMT solver , 2013, PAAR@IJCAR.
[16] Peter J. Stuckey,et al. The Cassowary linear arithmetic constraint solving algorithm , 2001, TCHI.
[17] Jochen Hoenicke,et al. SMTInterpol: An Interpolating SMT Solver , 2012, SPIN.
[18] Cesare Tinelli,et al. Solving SAT and SAT Modulo Theories: From an abstract Davis--Putnam--Logemann--Loveland procedure to DPLL(T) , 2006, JACM.