Novel fabrication of Ag thin film on glass for efficient surface-enhanced Raman scattering.

This paper describes a very simple electroless-plating method used to prepare optically tunable nanostructured Ag films. Very stable Ag films can be reproducibly fabricated simply by soaking glass substrates in ethanolic solutions of AgNO3 and butylamine. The grain size of silver can be readily controlled to range from 20 to 150 nm, and these nanostructural features correlated well with their UV/vis absorption characteristics, as well as with their surface-enhanced Raman scattering (SERS) activities. It is also very advantageous that the Ag films prepared exhibit very even SERS activity over an area up to hundreds thousand square-micrometers, and the enhancement factor estimated using benzenethiol as a prototype adsorbate reaches approximately 2 x 10(5). Since the proposed method is cost-effective and is suitable for the mass production of diverse Ag films irrespective of the shapes of the underlying substrates, it is expected to play a significant role in the development of surface plasmon-based analytical devices.