Feasibility Study for Geophysical Monitoring Renewable Gas Energy Compressed in Pore Storages

Most renewable energy sources are intermittent and need buffer storage (e.g., compressed air energy storage, CAES) to bridge the time-gap between power supply and demand peaks. Replacing pore brine with CAES causes changes in electro-elastic properties and density, and justifies applications of multi-geophysical approach. In this numerical study we apply techniques of the elastic full waveform inversion (FWI), electric resistivity tomography (ERT), transient electromagnetic induction (TEM) and gravity to detect and monitor CAES in deep reservoirs and possible leakages in shallow groundwater aquifers of North Germany. For different subsurface model scenarios of CAES reservoirs and leakages, synthetic data sets are generated and inverted using constraints on the initial model. Results reveal principally the capability of our applied approach to resolve the CAES plume in deep saline reservoirs and shallow groundwater aquifers. The ERT resolution for leakages is highly enhanced for the combined surface-borehole survey compared to the individual surface and borehole surveys. The applied gravity technique is highly sensitive to the mass deficit caused by CAES plume. The detect ability limit of the technique is determined by the least CAES volume causing an anomaly with amplitude just above the accuracy range of modern micro-gravimeters. The FWI technique can map the shallow CAES leakage by anomalies in the reconstructed ΔVp, ΔVs and Δdb tomograms within the background aquifer. However, these tomograms contain inversion artifacts and smearing effects related mainly to the dominance of the Rayleigh wave in the data. Obviously, applied multi-techniques complement and confirm each other. CAES plumes cause strong mass deficits and moderate resistivity highs and thus are more sensitive for gravity and FWI methods. Applying constrained inversion minimizes interpretation ambiguities and helps recovering almost realistic electro-elastic parameters that can be applied in adequate petrophysical equations to quantify CAES saturations.

[1]  A. Levander Fourth-order finite-difference P-SV seismograms , 1988 .

[2]  T. Madden,et al.  The effect of pressure on the electrical resistivity of water‐saturated crystalline rocks , 1965 .

[3]  Biwen Xu,et al.  Archaeological investigation by electrical resistivity tomography: a preliminary study , 1991 .

[4]  S. A. Hagrey,et al.  2D Optimized Electrode Arrays for Borehole Resistivity Tomography and CO 2 Sequestration Modelling , 2012 .

[5]  J. J. Arps The Effect of Temperature on the Density and Electrical Resistivity of Sodium Chloride Solutions , 1953 .

[6]  Romain Brossier,et al.  Regularized seismic full waveform inversion with prior model information , 2013 .

[7]  Reinhard Baldschuhn,et al.  Geotektonischer Atlas von Nordwest-Deutschland und dem - deutschen Nordsee-Sektor , 2001 .

[8]  A. Christiansen,et al.  Presenting a Free, Highly Flexible Inversion Code , 2009 .

[9]  D. Komatitsch,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .

[10]  T. Dahlin,et al.  A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys , 2001 .

[11]  F. Gaßmann Uber die Elastizitat poroser Medien. , 1961 .

[12]  Huseyin Denli,et al.  Double-Difference Elastic Waveform Tomography In the Time Domain , 2009 .

[13]  Bernd Lahmeyer,et al.  Application of three‐dimensional interactive modeling in gravity and magnetics , 1988 .

[14]  A. Pekdeger,et al.  Salty groundwater flow in the shallow and deep aquifer systems of the Schleswig–Holstein area (North German Basin) , 2009 .

[15]  Hans-Jürgen Götze,et al.  Hybrid modelling of gravity, gravity gradients and magnetic fields , 2011 .

[16]  Wolfgang Rabbel,et al.  Seismic and geoelectric modeling studies of parameters controlling CO2 geostorage in saline formations , 2013 .

[17]  Olaf Kolditz,et al.  Impacts of the use of the geological subsurface for energy storage: an investigation concept , 2013, Environmental Earth Sciences.

[18]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .

[19]  D. Köhn,et al.  On the influence of model parametrization in elastic full waveform tomography , 2012 .

[20]  Jonathan Chambers,et al.  Improved strategies for the automatic selection of optimized sets of electrical resistivity tomography measurement configurations , 2006 .

[21]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[22]  M. H. Loke,et al.  Fast computation of optimized electrode arrays for 2D resistivity surveys , 2010, Comput. Geosci..

[23]  S. Operto,et al.  Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion , 2009 .

[24]  D. Rucker,et al.  Smoothness‐constrained time‐lapse inversion of data from 3D resistivity surveys , 2014 .

[25]  S. A. Hagrey,et al.  Numerical and experimental mapping of small root zones using optimized surface and borehole resistivity tomography , 2011 .

[26]  Romain Brossier,et al.  Two-dimensional frequency-domain visco-elastic full waveform inversion: Parallel algorithms, optimization and performance , 2011, Comput. Geosci..

[27]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[28]  Tapan Mukerji,et al.  Bounds on low‐frequency seismic velocities in partially saturated rocks , 1998 .

[29]  J. Virieux,et al.  Target-oriented Time-lapse Imaging Using FWI with Prior Model Information , 2013 .

[30]  Fabian Hese 3D Modellierungen und Visualisierung von Untergrundstrukturen für die Nutzung des unterirdischen Raumes in Schleswig-Holstein , 2012 .

[31]  Zhijing Wang,et al.  Seismic properties of pore fluids , 1992 .

[32]  G. M. Hoversten,et al.  Gravity monitoring of CO2 movement during sequestration: Model studies , 2008 .

[33]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[34]  Al Hagrey,et al.  2D Model Study of CO2 Plumes in Saline Reservoirs by Borehole Resistivity Tomography , 2011 .

[35]  Dedong Li,et al.  The coupled simulator ECLIPSE–OpenGeoSys for the simulation of CO2 storage in saline formations , 2011 .

[36]  Romain Brossier,et al.  Seismic imaging of complex onshore structures by two-dimensional elastic frequency-domain full-waveform inversion , 2009 .

[37]  A. L. Ramirez,et al.  Stochastic inversion of electrical resistivity changes using a Markov Chain Monte Carlo approach , 2005 .

[38]  Alan G. Green,et al.  Experimental design: Electrical resistivity data sets that provide optimum subsurface information , 2004 .