First Cosmology Results Using Type Ia Supernovae from the Dark Energy Survey: Photometric Pipeline and Light-curve Data Release

We present griz light curves of 251 SNe Ia from the first 3 years of the Dark Energy Survey Supernova Program's (DES-SN) spectroscopically classified sample. The photometric pipeline described in this paper produces the calibrated fluxes and associated uncertainties used in the cosmological parameter analysis by employing a scene modeling approach that simultaneously models a variable transient flux and temporally constant host galaxy. We inject artificial point sources onto DECam images to test the accuracy of our photometric method. Upon comparison of input and measured artificial supernova fluxes, we find that flux biases peak at 3 mmag. We require corrections to our photometric uncertainties as a function of host galaxy surface brightness at the transient location, similar to that seen by the DES Difference Imaging Pipeline used to discover transients. The public release of the light curves can be found at https://des.ncsa.illinois.edu/releases/sn.

M. Sullivan | B. Yanny | M. Smith | R. C. Wolf | A. Roodman | D. W. Gerdes | D. J. James | M. Soares-Santos | J. Lasker | H. T. Diehl | K. Herner | K. Honscheid | W. Wester | D. Brooks | J. Gschwend | S. R. Hinton | M. Schubnell | G. Tarle | E. Bertin | R. A. Gruendl | T. M. C. Abbott | E. Morganson | I. Sevilla-Noarbe | D. A. Goldstein | R. C. Nichol | A. Carnero Rosell | L. N. da Costa | S. Desai | P. Doel | T. F. Eifler | J. Frieman | D. Gruen | K. Kuehn | O. Lahav | M. March | J. L. Marshall | P. Martini | B. Nord | A. A. Plazas | E. Sanchez | V. Scarpine | F. Sobreira | E. Suchyta | M. E. C. Swanson | B. Flaugher | R. Kessler | F. J. Castander | P. Fosalba | R. Miquel | J. De Vicente | J. Annis | M. Carrasco Kind | J. Carretero | G. Gutierrez | D. L. Hollowood | S. Serrano | R. J. Foley | A. R. Walker | S. Allam | M. Crocce | Y. Zhang | D. Thomas | L. Galbany | R. Nichol | D. Gerdes | J. Frieman | O. Lahav | F. Castander | P. Fosalba | M. Sullivan | P. Brown | A. Rosell | L. Costa | K. Honscheid | E. Rykoff | F. Sobreira | M. Swanson | D. Tucker | M. Kind | R. Gruendl | W. Hartley | J. Annis | K. Herner | R. Kessler | M. Sako | S. Allam | D. Brout | H. Diehl | J. Gschwend | I. Sevilla-Noarbe | T. Abbott | S. Ávila | E. Bertin | D. Brooks | D. Burke | J. Carretero | M. Crocce | C. Cunha | C. D'Andrea | C. Davis | S. Desai | P. Doel | T. Eifler | B. Flaugher | E. Gaztañaga | D. Gruen | G. Gutiérrez | D. Hollowood | D. James | K. Kuehn | M. Lima | J. Marshall | R. Miquel | A. Plazas | A. Roodman | V. Scarpine | R. Schindler | M. Schubnell | S. Serrano | E. Suchyta | G. Tarlé | R. Thomas | A. Walker | W. Wester | B. Yanny | D. Scolnic | Y.-C. Pan | R. Foley | B. Bassett | M. Soares-Santos | J. Garc'ia-Bellido | P. Nugent | M. March | E. Sánchez | T. Davis | D. Goldstein | P. Martini | B. Nord | D. Thomas | Y. Zhang | L. Galbany | A. Kim | E. Morganson | M. Childress | A. Möller | M. Smith | B. Tucker | S. Hinton | E. Macaulay | J. Lasker | R. Wolf | J. Vicente | N. Kuropatkin | T. Li | E. Kasai | D. L. Burke | C. E. Cunha | C. B. D’Andrea | C. Davis | E. Gaztanaga | W. G. Hartley | N. Kuropatkin | M. Lima | P. Nugent | E. S. Rykoff | D. Scolnic | B. A. Bassett | D. Brout | M. Sako | T. M. Davis | B. E. Tucker | R. C. Thomas | S. Avila | T. S. Li | D. L. Tucker | Y.-C. Pan | M. Childress | A. G. Kim | R. Schindler | E. Macaulay | A. Möller | P. Brown | E. Kasai | J. García-Bellido | M. C. Kind | A. C. Rosell | A. Roodman | J. Marshall | T. Li | T. Li | P. Brown | R. Wolf

[1]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[2]  M. Sullivan,et al.  SUPERNOVA SIMULATIONS AND STRATEGIES FOR THE DARK ENERGY SURVEY , 2011, 1111.1969.

[3]  R. Nichol,et al.  A Search for Kilonovae in the Dark Energy Survey , 2016, 1611.08052.

[4]  B. Yanny,et al.  Instrumental Response Model and Detrending for the Dark Energy Camera , 2017, 1706.09928.

[5]  Jake Vanderplas,et al.  SNANA: A Public Software Package for Supernova Analysis , 2009, 0908.4280.

[6]  S. Rodney,et al.  PythonPhot: Simple DAOPHOT-type photometry in Python , 2015 .

[7]  D. Lang,et al.  The DECam Plane Survey: Optical Photometry of Two Billion Objects in the Southern Galactic Plane , 2017, 1710.01309.

[8]  Andrew Becker,et al.  HOTPANTS: High Order Transform of PSF ANd Template Subtraction , 2015 .

[9]  A. Pastorello,et al.  COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY , 2013, 1310.3828.

[10]  Mamoru Doi,et al.  THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.

[11]  David O. Jones,et al.  The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.

[12]  Robert Armstrong,et al.  GalSim: The modular galaxy image simulation toolkit , 2014, Astron. Comput..

[13]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[14]  R. Ellis,et al.  The Supernova Legacy Survey: Measurement of Omega_M, Omega_Lambda,and w from the First Year Data Set , 2005, astro-ph/0510447.

[15]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[16]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[17]  Gary M. Bernstein,et al.  Characterization and correction of charge-induced pixel shifts in DECam , 2015, 1501.02802.

[18]  B. Yanny,et al.  The Dark Energy Survey Image Processing Pipeline , 2018, 1801.03177.

[19]  R. C. Wolf,et al.  AUTOMATED TRANSIENT IDENTIFICATION IN THE DARK ENERGY SURVEY , 2015, 1504.02936.

[20]  Armin Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera , 2017, The Astrophysical Journal.

[21]  A. Riess,et al.  Measuring the Properties of Dark Energy with Photometrically Classified Pan-STARRS Supernovae. I. Systematic Uncertainty from Core-collapse Supernova Contamination , 2016, 1611.07042.

[22]  J. Munn,et al.  The USNO-B Catalog , 2002, astro-ph/0210694.

[23]  P. Astier,et al.  Photometry of supernovae in an image series: methods and application to the SuperNova Legacy Survey (SNLS) , 2013, 1306.5153.

[24]  B. Yanny,et al.  A DARK ENERGY CAMERA SEARCH FOR AN OPTICAL COUNTERPART TO THE FIRST ADVANCED LIGO GRAVITATIONAL WAVE EVENT GW150914 , 2016, 1602.04198.

[25]  C. B. D'Andrea,et al.  ASSESSMENT OF SYSTEMATIC CHROMATIC ERRORS THAT IMPACT SUB-1% PHOTOMETRIC PRECISION IN LARGE-AREA SKY SURVEYS , 2016, 1601.00117.

[26]  P. Astier,et al.  The brighter-fatter effect and pixel correlations in CCD sensors , 2014, 1402.0725.

[27]  M. Sullivan,et al.  THE DIFFERENCE IMAGING PIPELINE FOR THE TRANSIENT SEARCH IN THE DARK ENERGY SURVEY , 2015, 1507.05137.

[28]  D. Gerdes,et al.  Astrometric Calibration and Performance of the Dark Energy Camera , 2017, 1703.01679.

[29]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[30]  B. Yanny,et al.  Forward Global Photometric Calibration of the Dark Energy Survey , 2017, 1706.01542.

[31]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[32]  A A Plazas,et al.  Transverse electric fields' effects in the Dark Energy Camera CCDs , 2014 .