Prediction of blue, red and green aurorae at Mars

The upper atmosphere of Mars is a laboratory for better understanding the planetary atmosphere evolution, and is an example of the interaction of the solar wind with an unmagnetized planet that has only patches of crustal magnetic field. In that context, several space missions were launched to study the Martian environment and its aurorae, notably ESA's Mars Express discovered the first aurora-like structures, and more recently NASA's MAVEN, which is dedicated to understand the atmospheric escape. However, none of the existing missions have spectrometers in the visible spectral range for the observation of the upper atmosphere and the aurorae, but there are UV spectrometer which can be used to infer visible aurora emission. The UV aurorae on Mars have a counterpart in the visible spectral range which should be detectable under the right conditions. We discuss what are the most favorable conditions to observe these aurorae discernible with the naked eye. In this paper, we simulate the Martian aurora in the visible spectral range both with an experimental setup (the Planeterrella, which we use to measure intensity with respect to the naked eye) and with a numerical ionosphere simulation model (Trans⁎/Aeroplanets). We show that the electron impact on CO2 produces strong emissions at 412 nm and 434 nm, i.e., in the blue part of the visible spectrum which are due to the CO2+(A) Fox–Duffendack–Barker bands. The modeling of the electron transport at Mars shows that these blue emissions as well as the emissions of the 630 nm (red) and 557.7 nm (green) lines of atomic oxygen may be observable several times during a solar cycle during strong solar events. The absence of visible spectrometers dedicated to these observations onboard existing space missions and the location of the different Martian rovers, far from the vertically aligned crustal magnetic field lines of Mars, have prevented so far the observations of such an aurora. In the foreseeable future, two missions may help observing these aurorae: the exo-Mars/Trace Gas Orbiter mission will carry a visible spectrometer which could be used to detect these events in the visible spectral range. NOMAD (Nadir and Occultation for Mars Discovery) will carry a UV-visible spectrometer in the 200–650 nm range.

[1]  E. Oran,et al.  Ionization efficiency due to primary and secondary photoelectrons - A numerical model , 1989 .

[2]  J. Lilensten,et al.  Comprehensive calculation of the energy per ion pair or W values for five major planetary upper atmospheres , 2011 .

[3]  Anna Fedorova,et al.  The O2 nightglow in the martian atmosphere by SPICAM onboard of Mars-Express , 2012 .

[4]  Nancy Janet Chanover,et al.  The effect of solar flares, coronal mass ejections, and solar wind streams on Venus’ 5577 Å oxygen green line , 2014 .

[5]  R. Lundin,et al.  Observations of aurorae by SPICAM ultraviolet spectrograph on board Mars Express: Simultaneous ASPERA‐3 and MARSIS measurements , 2008 .

[6]  P. Feldman,et al.  The ultraviolet bands of the CO2/plus/ ion in comets , 1982 .

[7]  J. Ajello Emission Cross Sections of CO by Electron Impact in the Interval 1260–5000 Å. I , 1971 .

[8]  Mathieu Barthelemy,et al.  Sensitivity of upper atmospheric emissions calculations to solar/stellar UV flux , 2014 .

[9]  J. Lilensten,et al.  The Planeterrella, a pedagogic experiment in planetology and plasma physics , 2009 .

[10]  D. Mitchell,et al.  Photoelectrons on closed crustal field lines at Mars , 2011 .

[11]  O. Witasse,et al.  Correction to “Prediction of a CO22+ layer in the atmosphere of Mars” , 2003 .

[12]  J. W. King,et al.  Space Research VIII , 1968 .

[13]  P. Drossart,et al.  Visible and near‐infrared nightglow of molecular oxygen in the atmosphere of Venus , 2009 .

[14]  Jean-Pierre Bibring,et al.  First detection of O 2 1.27 μm nightglow emission at Mars with OMEGA/MEX and comparison with general circulation model predictions , 2012 .

[15]  F. Forget,et al.  Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM , 2009 .

[16]  R. Lundin,et al.  Locations of Atmospheric Photoelectron Energy Peaks Within the Mars Environment , 2007 .

[17]  Oleg Korablev,et al.  Nightglow in the Upper Atmosphere of Mars and Implications for Atmospheric Transport , 2005, Science.

[18]  I. Richardson,et al.  Solar wind drivers of geomagnetic storms during more than four solar cycles , 2012 .

[19]  Oleg Korablev,et al.  Discovery of an aurora on Mars , 2005, Nature.

[20]  Christopher J. Mertens,et al.  Influence of dust loading on atmospheric ionizing radiation on Mars , 2014 .

[21]  Robert J. Lillis,et al.  Nightside electron precipitation at Mars: Geographic variability and dependence on solar wind conditions , 2013 .

[22]  F. G. Carrozzo,et al.  Oxygen airglow emission on Venus and Mars as seen by VIRTIS/VEX and OMEGA/MEX imaging spectrometers , 2011 .

[23]  T. Slanger,et al.  CO prompt emission as a CO2 marker in comets and planetary atmospheres , 2012 .

[24]  F. Leblanc,et al.  Dayglow on Mars: Kinetic modelling with SPICAM UV limb data , 2009 .

[25]  G. Santin,et al.  The magnitude and effects of extreme solar particle events , 2014 .

[26]  Varun Sheel,et al.  Numerical simulation of the effects of a solar energetic particle event on the ionosphere of Mars , 2012 .

[27]  S. Bougher,et al.  Exospheric temperatures at Mars measured by SPICAM: seasonal trends , 2011 .

[28]  C. Mertens,et al.  Computing uncertainties in ionosphere‐airglow models: I. Electron flux and species production uncertainties for Mars , 2012 .

[29]  Jean Lilensten,et al.  Ionization processes in the atmosphere of Titan II. Electron precipitation along magnetic field lines , 2009 .

[30]  O. Witasse,et al.  Prediction of a CO22+ layer in the atmosphere of Mars , 2002 .

[31]  A. I. F. Stewart,et al.  The Venus ultraviolet aurora - Observations at 130.4 nm , 1986 .

[32]  Christopher J. Mertens,et al.  Ionization processes in the atmosphere of Titan - III. Ionization by high-Z nuclei cosmic rays , 2011 .

[33]  O. Witasse,et al.  Computing uncertainties in ionosphere‐airglow models: II. The Martian airglow , 2012 .

[34]  J. Gérard,et al.  Distribution of the ultraviolet nitric oxide Martian night airglow: Observations from Mars Express and comparisons with a one‐dimensional model , 2008 .

[35]  D. Mitchell,et al.  Distribution and variability of accelerated electrons at Mars , 2008 .

[36]  J. Dowling The Retina: An Approachable Part of the Brain , 1988 .

[37]  A. Nier,et al.  Composition and structure of Mars' Upper atmosphere: Results from the neutral mass spectrometers on Viking 1 and 2 , 1977 .

[38]  J. Lilensten,et al.  Ionization processes in the atmosphere of Titan: I. Ionization in the whole atmosphere , 2009 .

[39]  V. Krasnopolsky Oxygen emissions in the night airglow of the Earth, Venus and Mars , 1986 .

[40]  H. Hayakawa,et al.  Auroral Plasma Acceleration Above Martian Magnetic Anomalies , 2007 .

[41]  J. Halekas,et al.  Aurora in Martian Mini Magnetospheres , 2013 .

[42]  D. Mitchell,et al.  Evidence for collisionless magnetic reconnection at Mars , 2007 .

[43]  S. Barabash,et al.  Suprathermal electron fluxes on the nightside of Mars: ASPERA-3 observations , 2008 .

[44]  A. Brekke,et al.  The Planeterrella experiment: from individual initiative to networking , 2012, 1207.1866.

[45]  S. Barabash,et al.  Energy distribution asymmetry of electron precipitation signatures at Mars , 2013 .

[46]  O. Dutuit,et al.  Modelling dications in the diurnal ionosphere of Venus , 2007 .

[47]  C. Lathuillère,et al.  Modeling the OI 630.0 and 557.7 nm thermospheric dayglow during EISCAT-WINDII coordinated measurements , 1999 .

[48]  S. Barabash,et al.  Long‐lived auroral structures and atmospheric losses through auroral flux tubes on Mars , 2009 .

[49]  Jean Lilensten,et al.  Calibration of the TEC derived from GPS measurements and from ionospheric models using the EISCAT radar , 2003 .

[50]  F. Leblanc,et al.  The density of the upper martian atmosphere measured by Lyman-α absorption with Mars Express SPICAM , 2011 .

[51]  G. Anderson,et al.  Mariner 6 and 7 Ultraviolet Spectrometer Experiment: Upper atmosphere data , 1971 .

[52]  J. Lilensten,et al.  Modelling the Venusian airglow , 2008 .

[53]  Matthew West,et al.  Solar activity and its evolution across the corona: recent advances , 2013 .

[54]  Paul H. Krupenie The band spectrum of carbon monoxide , 1966 .

[55]  Christopher J. Mertens,et al.  Computation of Cosmic Ray Ionization and Dose at Mars: a Comparison of HZETRN and Planetocosmics for Proton and Alpha Particles , 2015 .

[56]  D. Mitchell,et al.  Current sheets at low altitudes in the Martian magnetotail , 2006 .

[57]  Ness,et al.  Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment , 1999, Science.

[58]  D. Mitchell,et al.  On the origin of aurorae on Mars , 2006 .

[59]  A. Lane,et al.  Mariner 9 Ultraviolet Spectrometer Experiment: Mars Airglow Spectroscopy and Variations in Lyman Alpha , 1972 .

[60]  A. V. Jones Historical review of great auroras , 1992 .

[61]  M. Messerotti Space Weather and Space Climate , 2004 .

[62]  T. Bida,et al.  Discovery of the atomic oxygen green line in the Venus night airglow. , 2001, Science.

[63]  S. Barabash,et al.  Numerical modeling of the magnetic topology near Mars auroral observations , 2007 .

[64]  M. Richardson,et al.  The Martian Atmosphere During the Viking Mission, I Infrared Measurements of Atmospheric Temperatures Revisited , 2000 .

[65]  P. Amblard,et al.  The thermospheric auroral red line polarization: confirmation of detection and first quantitative analysis , 2013 .

[66]  F. Leblanc,et al.  Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express , 2006 .

[67]  J. Fox The ionospheric source of the red and green lines of atomic oxygen in the Venus nightglow , 2012 .

[68]  G. Gronoff,et al.  Auroral Formation and Plasma Interaction Between Magnetized Objects Simulated With the Planeterrella , 2011, IEEE Transactions on Plasma Science.