High-speed modulation of semiconductor lasers

An overview is given of the direct modulation performance of high-speed semiconductor lasers, The high-speed response characteristics are described using a cascaded two-port model of the laser. This model separates the electrical parasitics from the intrinsic laser and enables these subsections to be considered separately. The presentation concentrates on the small-signal intensity modulation and frequency modulation responses, and the large-signal switching transients and chirping. Device-dependent limitations on high-speed performance are explored and circuit modeling techniques are briefly reviewed.

[1]  J. Goodman,et al.  Optical fiber delay line signal processing , 1984 .

[2]  Govind P. Agrawal,et al.  Coupled-cavity semiconductor lasers under current modulation: Small-signal analysis , 1985 .

[3]  Motohisa Hirao,et al.  Optoelectronic integrated light sources for high-speed optical communication systems , 1985 .

[4]  G. J. Aspin,et al.  Gain-switched pulse generation with semiconductor lasers , 1982 .

[5]  Y. Suematsu,et al.  Harmonic Characteristics of Laser Diodes , 1982 .

[6]  D. A. Frisch,et al.  Effect of laser chirp on optical systems-initial tests using a 1480 nm DFB laser , 1984 .

[7]  High-frequency modulation of 1.52 μm vapour-phase-transported InGaAsP lasers , 1985 .

[8]  High-frequency small-signal modulation characteristics of short-cavity InGaAsP lasers , 1984 .

[9]  The heteroepitaxial ridge-overgrown distributed feedback laser , 1985 .

[10]  A. Yariv,et al.  Ultra-high speed semiconductor lasers , 1985 .

[11]  N. Holonyak,et al.  Physics of Semiconductor Laser Devices , 1981 .

[12]  Yoshihisa Yamamoto,et al.  Direct frequency modulation in AlGaAs semiconductor lasers , 1982 .

[13]  An analytic model for the modulation response of buried heterostructure lasers , 1984, IEEE Journal of Quantum Electronics.

[14]  Kam Y. Lau,et al.  11‐GHz direct modulation bandwidth GaAlAs window laser on semi‐insulating substrate operating at room temperature , 1984 .

[15]  B. S. Poh Prediction of self-sustained oscillations in buried-heterostructure stripe lasers , 1985 .

[16]  D. J. Channin,et al.  Effect of gain saturation on injection laser switching , 1979 .

[17]  L. Figueroa,et al.  High-frequency characteristics of GaAlAs injection lasers , 1982 .

[18]  RodneyS. Tucker,et al.  Large-signal circuit model for simulation of injection-laser modulation dynamics , 1981 .

[19]  John E. Bowers,et al.  High-frequency constricted mesa lasers , 1985 .

[20]  W. Powazinik,et al.  Strong influence of nonlinear gain on spectral and dynamic characteristics of InGaAsP lasers , 1985 .

[21]  Kam Y. Lau,et al.  Direct amplitude modulation of short‐cavity GaAs lasers up to X‐band frequencies , 1983 .

[22]  FACTORS AFFECTING WAVELENGTH CHIRPING IN DIRECTLY MODULATED SEMICONDUCTOR LASERS. , 1985 .

[23]  R. Yen,et al.  4-Gbit/s transmission over 103 km of optical fiber using a novel electronic multiplexer/demultiplexer , 1985, Journal of Lightwave Technology.

[24]  W. Harth,et al.  Experimental investigation of parametric sideband amplification in injection lasers , 1976 .

[25]  K. Nakagawa,et al.  Laser Mode Partition Noise Evaluation for Optical Fiber Transmission , 1980, IEEE Trans. Commun..

[26]  D. M. Drury,et al.  Performance of Optically Microwave Switching Devices Coupled , 1981 .

[27]  S. Sasaki,et al.  GaAs optoelectronic integrated light sources , 1983 .

[28]  Richard A. Linke High-capacity single-frequency laser transmission systems , 1985 .

[29]  N. A. Olsson,et al.  MICROWAVE INTENSITY AND FREQUENCY MODULATION OF HETEROEPITAXIAL-RIDGE-OVERGROWN DISTRIBUTED FEEDBACK LASERS. , 1985 .

[30]  D. J. Pope,et al.  Microwave Circuit Models of Semiconductor Injection Lasers , 1982 .

[31]  M. Adams,et al.  Influence of spectral hole-burning on quaternary laser transients , 1983 .

[32]  Amnon Yariv,et al.  The intrinsic electrical equivalent circuit of a laser diode , 1981 .

[33]  Richard A. Linke,et al.  1.55‐μm InGaAsP distributed feedback vapor phase transported buried heterostructure lasers , 1985 .

[34]  T. Okoshi,et al.  Heterodyne and Coherent Optical Fiber Communications: Recent Progress , 1982 .

[35]  Michiharu Nakamura,et al.  Effects of lateral mode and carrier density profile on dynamic behaviors of semiconductor lasers , 1978 .

[36]  R. Linke,et al.  Modulation induced transient chirping in single frequency lasers , 1985 .

[37]  R. B. Lauer,et al.  15 GHz direct modulation bandwidth of vapour-phase regrown 1.3 μm InGaAsP buried-heterostructure lasers under CW operation at room temperature , 1985 .

[38]  Kam Y. Lau,et al.  Very high frequency GaAlAs laser field‐effect transistor monolithic integrated circuit , 1982 .

[39]  K. Kishino,et al.  Wavelength variation of 1.6 µm wavelength buried heterostructure GaInAsP/InP lasers due to direct modulation , 1982, IEEE Journal of Quantum Electronics.

[40]  Franklin Fa-Kun Kuo,et al.  Network analysis and synthesis , 1962 .

[41]  Rodney S. Tucker,et al.  Large-signal switching transients in index-guided semiconductor lasers , 1984 .

[42]  Masahiro Asada,et al.  Density-matrix theory of semiconductor lasers with relaxation broadening model-gain and gain-suppression in semiconductor lasers , 1985 .

[43]  J. Yamada,et al.  1.55 μm optical transmission experiments at 2 Gbit/s using 51.5 km dispersion-free fibre , 1982 .

[44]  U. Koren,et al.  Wide-bandwidth modulation of three-channel buried-crescent laser diodes , 1985 .

[45]  J. Osterwalder,et al.  Frequency modulation of GaAlAs injection lasers at microwave frequency rates , 1980 .

[46]  L. Figueroa,et al.  High-Frequency Characteristics of GaAlAs Injection Lasers , 1982 .

[47]  Ivan P. Kaminow,et al.  High-frequency characteristics of directly modulated InGaAsP ridge waveguide and buried heterostructure lasers , 1984 .

[48]  J. Nishizawa,et al.  Impedance characteristics of double-hetero structure laser diodes , 1979 .

[49]  R. Linke Direct gigabit modulation of injection lasers - Structure-dependent speed limitations , 1984, Journal of Lightwave Technology.

[50]  I. Habermayer Nonlinear circuit model for semiconductor lasers , 1981 .

[51]  T. Koch,et al.  Nature of wavelength chirping in directly modulated semiconductor lasers , 1984 .

[52]  C. Henry Theory of the linewidth of semiconductor lasers , 1982 .

[53]  Amnon Yariv,et al.  Noise equivalent circuit of a semiconductor laser diode , 1982 .

[54]  Yasuhiko Arakawa,et al.  Quantum noise and dynamics in quantum well and quantum wire lasers , 1984 .

[55]  Rodney S. Tucker,et al.  Circuit modeling of the effect of diffusion on damping in a narrow-stripe semiconductor laser , 1983 .

[56]  R. Olshansky,et al.  Reduction of dynamic linewidth in single-frequency semiconductor lasers , 1984 .

[57]  Ikuo Mito,et al.  InGaAsP double-channel- planar-buried-heterostructure laser diode (DC-PBH LD) with effective current confinement , 1983 .

[58]  Chin B. Su,et al.  Effect of doping level on the gain constant and modulation bandwidth of InGaAsP semiconductor lasers , 1984 .

[59]  T. Paoli Near-threshold behavior of the intrinsic resonant frequency in a semiconductor laser , 1979 .

[60]  Niloy K. Dutta,et al.  CW electrooptical properties of InGaAsP(λ = 1.3 µm) buried-heterostructure lasers , 1981 .

[61]  M. Demokan,et al.  An analysis of gain-switched semiconductor lasers generating pulse-code-modulated light with a high bit rate , 1984, IEEE Journal of Quantum Electronics.

[62]  A. Yariv,et al.  Buried heterostructure AlGaAs lasers on semi-insulating substrates , 1981 .